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RESUMO 
 
Este trabalho tem como objetivo principal investigar diferentes abordagens de 
segmentação e classificação de imagens de sensoriamento remoto para o 
mapeamento de áreas vegetadas no estado de Minas Gerais. Como ponto de 
partida, este trabalho foca no desenvolvimento de uma abordagem geral de 
seleção e avaliação da segmentação de imagens de alta resolução utilizando 
amostras de objetos reais, os quais são referidos como objetos-referencia. Uma 
série de medidas foi aplicada para a avaliação da qualidade da segmentação 
produzida por diferentes combinações de parâmetros em diferentes classes de 
cobertura do solo. Estas medidas foram utilizadas para gerar diferentes valores 
de ranking onde a combinação de parâmetros que obteve o maior ranking foi 
selecionada com a combinação ideal de parâmetros para a segmentação de uma 
determinada classe. Os resultados dessa abordagem mostraram que cada classe 
apresentou um parâmetro diferente de segmentação, o que reforça que uma 
abordagem de escala única pode não ser adequada para representar toda a área 
de estudo. Uma vez selecionado a melhor segmentação (produzida pelos 
parâmetros selecionados), foi aplicada uma abordagem de classificação baseada 
em diferentes classificadores: Support Vector Machine, Árvores de Decisão e 
Random Forest. O objetivo desta abordagem foi verificar o desempenho destes 
classificadores combinados à abordagem baseada em objetos em gerar mapas da 
cobertura do solo. Baseando-se nos resultados de comparação visual e de valores 
de exatidão, o mapa produzido pelo Random Forest retratou mais precisamente 
todas as classes de cobertura do solo do que os outros mapas produzidos pelo 
classificador Árvore de Decisão e Support Vector Machine. 
 
Palavras-chave: Medidas de qualidade, objetos-referência, classes de cobertura 
do solo, algoritmos de aprendizagem. 



ABSTRACT 
 
This study aims to investigate different segmentation and classification 
approaches using remote sensing imagery for mapping vegetated areas in the 
state of Minas Gerais. As a starting point, this research focuses on developing a 
general approach for selecting and evaluating the segmentation of high-
resolution images using samples of real objects, which are referred to as 
reference objects. Several goodness measures have been applied for the 
assessment of the quality of the segmentation produced by different 
combinations of parameters for different land-cover classes. These 
measurements were used to generate different ranking values where the 
combination of parameters that achieved the highest ranking was selected as the 
ideal combination of parameters for the segmentation of a given class. The 
results of this approach showed that each class had a different parameter as the 
best parameter, which reinforces that a single scale approach may not be 
adequate to represent the entire study area. Once selected the best segmentation 
(produced by selected parameters), we applied a classification approach based 
on different classifiers: Support Vector Machine, Decision Trees and Random 
Forest. The goal of this approach was to verify the performance of these 
classifiers combined with object-based approach to generate maps of land-cover 
classes. Based on the results of visual comparison and values of accuracy, the 
map produced by the Random Forest depicted more accurately all land-cover 
classes than the other maps produced by Decision Tree Classifier and Support 
Vector Machine. 
 
Key-words: Goodness measures, reference objects, land-cover class, machine 
learning algorithms. 
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CHAPTER 1 - GENERAL INTRODUCTION 
 

1 STRUCTURE OF THE DISSERTATION 

 

This dissertation has been structured in two articles, according to the 

new available format from the Graduate Program in Forest Engineering 

formatting guidelines. The two articles were prepared according to the 

guidelines of the International Journal of Remote Sensing.  

The content of each chapter is briefly summarized as follows: 

 

Chapter 2 - Scale parameter selection for remote sensing image 

segmentation based on reference objects. This chapter focuses on the proposal 

of a procedure based on segmentation goodness measures for selecting optimal 

segmentation parameter values for remote sensing image segmentation. A 

supervised method based on manually delineated object was used. The 

methodological steps on selecting the reference objects, the goodness measures 

utilized and our selection procedure based on Global Score are presented. A 

single-class and a multi-class approach were analysed in order to verify whether 

is preferable a single or a multi-scale to represent the entire scene. 

 

Chapter 3 - Object-based classification with selected machine learning 

algorithms for the classification of vegetated areas using high-resolution 

RapidEye imagery. In this chapter, the study focuses in an object-based image 

analysis approach for classifying land-cover classes over a vegetated landscape 

using three supervised machine learning algorithms. For the segmentation 

process, the optimal multi-class parameter value (400A - Chapter 2) was used. 

The methodological steps on selecting the object features, tuning the machine 
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learning algorithms parameters as well as the final classification maps are 

presented. 
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2 INTRODUCTION 

 

In recent years, there has been an increasing interest in providing 

integration tools in the area of remote sensing for forest management. As it is 

already known, vegetation is a critical component of landscape and serves as an 

indicator of the overall ecosystem condition, environmental stress and landscape 

change at local, regional and global scales However, the perception of the 

difficulties in monitoring the earth's surface at regional and global scales led to 

the development of new operational solutions and, concomitantly, the 

development of new sensors.  

Studies possible only by the use of airborne sensors can now be easily 

implemented with data from remote sensing with the advent of satellite sensors 

with high and very high spatial resolution. Among the various sensors available 

today, the RapidEye (which is the focus of this research), which produce images 

with 5 m spatial resolution, has proven suitable for studies in the context of 

vegetation since the satellites were designed to be used mainly to monitor 

agricultural and environmental resources (RAPIDEYE, 2011). 

Hence, with the development of more advanced sensors, the level of 

detail within the images has increased considerably, allowing smaller features to 

be mapped on the Earth’s surface. However, new challenges have emerged when 

processing these images, resulting in a poor performance of traditional pixel-

based approaches. The main challenges are related to the increased spatial 

heterogeneity and the reduced size of objects that can be detected. Consequently, 

concerns regarding the accuracy and fidelity of the derived products also 

increased. 

In the last decade, a new approach has been extensively used to address 

these challenges: GEOBIA – Geographic Object-Based Image Analysis. 

According to GEOBIA, the basic unit of processing is no longer the pixel, but 
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objects composed of several pixels. There are several advantages in the 

application of a classification based on an object-based approach instead of 

pixel-based approach. Image objects, besides the spectral information, contain 

additional attributes (e.g. shape, texture, relational and contextual information) 

that can be used for classification purposes (BAATZ; SCHÄPE, 2000; 

BLASCHKE; STROBL, 2001). Moreover, segmentation produces homogeneous 

image objects, avoiding the induced salt-and-pepper effect (MEINEL; 

NEUBERT; REDER, 2001). 

This new approach implied the prior segmentation of satellite images, 

which means grouping spectrally similar pixels in a single object according to a 

stop-threshold called ‘scale parameter’. However, the quality of the 

segmentation is closely related to the scale parameter used. Until now, no 

general approach for selecting this threshold exists.  

There have been several significant advances in image segmentation 

process in the past few years. However, compared to the segmentation process 

itself, relatively little attention has been given to the evaluation of the 

segmentation results as well as to the development of a general approach to 

avoid the subjectivity in selecting a scale parameter. Since the quality of 

segmentation is closely related to the scale parameter used in the segmentation 

process, one of the major obstacles of object-based approach is to define an 

appropriate scale parameter for a specific type of image and object under 

investigation. The selection of the scale parameter is, mostly, based in the user 

experience or in a visual assessment of the image. Both cases are based human 

perception which is very difficult, time-consuming, subjective and the results 

may vary according to the user. In addition, the evaluation of the segmentation 

results is not yet a standard practice when conducting an object-based approach 

classification. In many cases, evaluation of segmentation is performed only 
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visually and taking into consideration the class or phenomenon under study 

which is also subjective. 

Hence, one of the motivations in conducting this research is to avoid this 

undesired subjectivity by developing a general approach to evaluate and 

compare the results of segmentations performed by several parameter 

combinations and, based on the results, to select the best segmentation 

parameter. 

The very next step in this process – which is also the next step of this 

research – is to conduct the classification based on the objects produced by the 

segmentation process. A classification is needed not only for a better 

understanding of the structure and composition of the resources and features 

under investigation, but also for the pattern recognition and for mapping areas in 

the earth’s surface which presents the same meaning in the digital images. It is 

also known that a poor segmentation can strongly affect the overall accuracy of 

the classification. It is essential, however, to be able to determine whether 

inaccuracy in the classification process is due to a poor classifier or a poor 

segmentation, or even both. Thus, the first step of the analysis must be to avoid 

the influence of a poor segmentation in the overall accuracy by choosing the best 

set of parameters to produce good segmentation results. 

In this context, a number of studies have been testing different classifiers 

in order to verify their influence in the final overall accuracy. Over the last 

years, machine learning algorithms have shown great potential to deal with a 

high number of predictors from the object-based approach as well as to improve 

the accuracy and reliability of remote sensing image classification. Machine 

learning algorithms have been intensively used for classification purposes in 

remote sensing showing improvements in classification accuracy. 

For this reason, the second part of this research focuses in evaluating 

their robustness in conducting classifications in an area with wide variety of 
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environmental settings due the different land-cover classes in order to obtain 

good classification results and, consequently, reliable information about the 

entire area. 
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3 Research objectives 

 

In order to help bridge the current research gap that exists, this dissertation has 

the following objectives: 

• To develop a procedure based on segmentation goodness measures and 

reference objects for selecting the appropriate image segmentation 

parameter values from a set of potential combinations produced by the 

Multi-Resolution Segmentation (MRS); 

• To assess the performance of different goodness measures in choosing an 

“optimal” from a large set of candidate segmentations produced by a set of 

different parameter values; 

• After the selection of the optimal segmentation parameter value, to examine 

the object-based approach in conducting classifications of a vegetated area 

in RapidEye data with a selection of machine learning algorithms such as 

Decision Trees, Random Forest and Support Vector Machines. 

• To produce a step-by-step tutorial on how to use these machine learning 

algorithms in the R environment for future studies. 
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4 BACKGROUND 

 

This section aims to provide the required theoretical fundaments for this 

research. 

 

4.1 Remote Sensing 

 

According to many definitions of the term ‘Remote Sensing’ found in 

literature (MORAES, 2002; LILLESAND; KIEFER, 2000; RICHARD; JYA, 

2006; DE JONG; MEER, 2004; SCHOWENGERDT, 2007) a broad definition 

can be stated as: 

 

The science and art of obtaining information 
about an object, area or phenomenon in the Earth’s 
surface through the detection, acquisition and analysis 
(the information interpretation and extraction) of the 
electromagnetic energy emitted or reflected by 
terrestrial objects and recorded by a device that is not 
in direct contact with the object, area, or phenomenon 
under investigation. 

 

Remote sensing, also called ‘Earth Observation’, refers in a general 

sense to the instrumentation, techniques and methods used to observe, or sense, 

the surface of the earth, usually by the formation of an image in a position, 

stationary or mobile, at a certain distance remote from that surface (BUITEN; 

CLEVERS, 1994). 

Concerning the mentioned concept, remote sensing researchers, 

technology producers, ecologists, forest and land managers agree in the potential 

role of remote sensing as an information resource to support sustainable forest 

management. This potential is based largely on the unique characteristics that 
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remote sensing data provides: synoptic, repetitive, quantitative, and spatial 

explicit capabilities (FRANKLING, 2001). 

 

4.1.1 Electromagnetic Spectrum 

 
The electromagnetic spectrum is a set of waves of electromagnetic 

radiation that differ by the value of their frequency and length. These waves are 

then classified into distinct regions (Figure 1). This radiation - which is defined 

according to Moraes (2002) as a form of energy which propagates without the 

need of a media, as waves or electromagnetic particles - is used in obtaining data 

from remote sensing and it is represented continuously in terms of wavelength, 

frequency or energy (MORAES, 2002; ROSENDO, 2005). 

 
Figure 1  The Electromagnetic Spectrum 
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The segments of the electromagnetic spectrum used by remote sensing 

are the visible and infrared spectrum (ROSENDO, 2005). The visible spectrum 

is the region of the spectrum which is perceived by the human eye and covers 

colors from violet to red. The infrared is divided into three: near-infrared (0.7 to 

1.3 µM), mid-infrared (1.3 to 6.0 µm) and thermal infrared (6.0 to 1000 µM) 

(Table 1). The ranges that include the set of frequencies or length waves of the 

electromagnetic spectrum are called spectral bands. 

 

Tabel 1 Regions of the electromagnetic spectrum and their wavelength ranges 
Regions Wavelength 
Gamma Ray < 0,003 – 0,4 µm 
X Ray 0,03 – 3,0 nm 
Ultraviolet 0,003 – 0,4 µm 

Blue 0,45 – 0,50 µm 
Green 0,50 – 0,54 µm Visible 
Red 0,65 – 0,72 µm 

Near Infrared 0,72 – 1,3 µm 
Mid Infrared 1,3 – 4,0 µm 
Far Infrared 4,0 – 300 µm 
Microwaves 1,0 – 100 cm 
Radio > 100 cm 

 

The sun and the Earth are the two main natural sources of 

electromagnetic energy used in remote sensing of land surface (MORAES, 

2002). Regardless of its source, all the radiation passes through the atmosphere. 

However, the length traveled through the atmospheric layers can vary widely. 

Thus, the effect of the atmosphere in the sensing may vary depending on the 

variations in length traveled by the radiation, the atmospheric conditions in the 

moment and of the wavelengths involved in the process (LILLESAND; 

KIEFER, 2000). 

The solar radiation that focus on earth’s surface is, in parts, scattered or 

reflected by particles in the atmosphere. Part of the radiation that hits the target 

is reflected or emitted. The phenomenon related to the portion of energy which 
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is reflected is called Reflectance (ρ) and it is important to remote sensing since 

the orbital sensors registers the reflectance from the objects in Earth’s surface. 

Each object in Earth’s surface which emits or reflects radiation has a spectral fit 

for each wavelength of the electromagnetic spectrum. 

 

4.2 RapidEye 

 
Known as RapidEye, the multispectral satellite constellation was designed 

by MacDonald Dettwiler and Associates (MDA) of Richmond, Canada and 

launched into space on August 29, 2008 (RAPIDEYE, 2011). The system is run 

by a private provider of geospatial information and services known as German 

RapidEye AG (BECKETT; ROBERTSON; STEYN, 2010). 

The system consists of five identical satellites 150 kg equally spaced 

around the orbit (TCY et al., 2005). The satellites operate in an orbit at 630 km 

altitude, each with a pubshbroom sensor, five multispectral bands and spatial 

resolution of 6.5 meters. The system is able to access any point on the surface of 

the Earth daily between latitudes -84º to +84º (RAPIDEYE, 2011; BECKETT; 

ROBERTSON; STEYN, 2010). 

The RapidEye products are available in two processing levels: 1B and 3A. 

The products that receive a Level 1B radiometric correction have a correction of 

the sensor, and receive data from the satellite altitude; On the other hand, 3A 

products receive radiometric, geometric and sensor correction (RAPIDEYE, 

2011). Also, the RapidEye images have the Red Edge band (690-730 nm), 

specific for monitoring the photosynthetic activity of the vegetation. Conducting 

a study to evaluate the contribution of RedEdge band in land use classification, 

Schuster, Förster and Kleinschmit (2012) calculated 24 spectral indices in which 

the Red Edge band was incorporated. Among the indices tested, was the NDVI 

(Normalized Difference Vegetation Index) with adaptations for the Red Edge. 



22 
 

The authors used the machine learning algorithms such as Support Vector 

Machine and Maximum Likelihood to conduct the classifications and as a result, 

found that for both, there was a slight improvement in the overall accuracy of 

the classification when they introduced the band Red Edge and indexes as inputs 

for classification. 

 

4.3 Image segmentation and object-based image classification 

 

The availability of high spatial resolution images obtained from 

satellites and airborne sensors has increased in recent years. However, traditional 

methods for classification based on pixels are not suitable for these types of 

images. For Yu et al. (2006) this is due to the fact that a single pixel usually 

represents only a small part of the target object classification in images with 

high spatial resolution. When the classification is done, the high degrees of 

spectral variability found in classes, such as shadows caused by differences in 

the canopy, etc. reduce the separability between classes, resulting in low 

classification accuracy. Moreover, the unsatisfactory results of this approach can 

be attributed to the fact that contextual and geometric information of the image 

are highly neglected. 

An alternative approach to the traditional pixel-based approach is the 

object-oriented approach (HAY; CASTILLA, 2008). The basic idea of this 

process is the grouping adjacent pixels into objects spectrally homogenous and 

thereby lead to the classification of the objects as being the minimum unit of 

image processing (YU et al., 2006). Using these objects as basic units of 

analysis has many benefits, such as reducing spectral variability within the class 

and the ability to include spatial and contextual information such as size, shape, 

texture and topological relations (BENZ et al., 2004). The objects are created 

through the segmentation and it can be defined as the process of partitioning an 
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image into non-overlapping regions. This process requires previous image 

segmentation for object delineation through a stop threshold called ‘scale 

parameter’. However, no general approach for selecting this parameter exists.  

The classification is the very next step in this approach. Several studies 

have been studies testing different classifiers such as machine learning 

algorithms in order to verify their influence in the final overall accuracy. These 

new classifiers have shown great potential in conducting classifications and 

improve the accuracy of the final classification (HUANG; DAVIS; 

TOWNSHEND,  2002; PAL, 2005; HAM et al., 2005; GISLASON; 

BENEDIKTSSON; SVEINSSON, 2006; LALIBERTE et al., 2006; 

LAWRENCE; WOOD; SHELEY, 2006; YAN et al. 2006; CHAN; 

PAELINCKX, 2008; PLATT; RAPOZA, 2008; WATTS et al., 2009; OTUKEI; 

BLASCHKE, 2010; STUMPF; KERLE, 2011; MYINT et al., 2011; DURO; 

FRANKLIN; DUBÉ, 2012). 
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Abstract: This paper presents a procedure based on measures of segmentation 
goodness and on reference objects for selecting appropriate segmentation 
parameter values from a set of potential combinations. For this study, we used a 
5m spatial resolution RapidEye image. A set of 20 reference objects and 15 test 
objects were manually delineated. For evaluating segmentation results, we used 
quality measures designed to compare the results of object-based image 
segmentation with sets of training objects extracted from the image of interest. 
These quality measures are mostly related to over-segmentation and under-
segmentation problems. We computed a score for each segmentation parameter 
according to the value obtained in each measures. The results show that the 
measures have different performance in terms of the identification of which 
parameter combination is better. However, based on the visual assessment of the 
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test objects, the proposed procedure showed to be efficient in identifying a 
suitable scale parameter value for each class. The results also reinforced the 
statement that a single-scale approach is not adequate for representing all classes 
as some of them may be under or over-segmented using a single scale parameter. 
Keywords: parameters selection, quality measures 
 

1. Introduction 

 

Classification of remotely sensed images for mapping and monitoring 

land cover had fundamental importance in recent decades, in particular, due to 

the development of new techniques and computer programs that enhanced the 

analysis and manipulation of increasingly available digital data. The 

classification process can be divided into two general approaches: i) pixel-based, 

and ii) object-based. The former has been traditionally used since the early 

stages of remote sensing image processing, while the latter has become more 

common in recent years (Blaschke 2010), after the availability of higher spatial 

resolution imagery. 

Also according to Blaschke (2010), there is a consensus in the field of 

remote sensing that some of the unsatisfactory results in classification of high 

spatial resolution images using pixel-based methods can be attributed to the fact 

that both geometrical and contextual information contained in the images are 

ignored. To address these issues, object-based analysis has become a concept 

widely used in geoscience studies to explore the geometric and contextual 

information from image data.  

Object-based methods require previous image segmentation for object 

delineation. Therefore, many segmentation algorithms have been developed 

aiming at the extraction of meaningful image objects. In most algorithms, users 

need to set one or more parameters that affect the average size and the number 

of objects generated during segmentation. However, parameter selection is 

uncertain. A specific set of parameters may produce a good segmentation result 
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when considering a homogeneous scene but this is not valid when a 

heterogeneous scene is under consideration. Since the landscape mostly consist 

of different types of environmental settings and varies in size (e.g. trees, rivers, 

forest remnants, etc.), a single-scale approach might not be appropriate as some 

features within the scene will be under-segmented (when part of the feature 

become part of another feature) or over-segmented (when the feature is 

segmented into smaller objects). 

Since the effectiveness of the object-based approach is directly affected 

by the segmentation quality, studies that deal with evaluation of image 

segmentation have become an emergent topic in remote sensing. 

Zhang (1996) categorized the evaluation methods into three types: 

analytical, empirical goodness and empirical discrepancy methods. The 

analytical methods evaluate the segmentation algorithm itself, considering its 

principles, requirements, utilities and complexity, etc., and the information 

provided by these methods are qualitative. However, in certain cases, these 

methods can provide quantitative information about the algorithms. Empirical 

quality methods as well as the analytical methods are also referred to as 

unsupervised methods of evaluation. These methods evaluate the performance of 

algorithms through quality measures such as, for example, statistical measures of 

pixels and the shape of objects, without the need for a reference or prior 

knowledge of the segmentation considered correct. On the other hand, the 

empirical discrepancy methods involve comparing multiple image 

segmentations with a manually delineated image object, also referred to as 

references, thus classified as supervised methods. 

There are some studies that have used unsupervised methods of 

evaluation (Espindola et al. 2006; Chabrier et al. 2006; Kim, Madden and 

Warner, 2008). A detailed description of unsupervised methods can be found in 
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Zhang, Fritts and Goldman (2008). However, according to Zhang, Xiao and 

Feng (2012) the supervised methods are the most used. 

Several studies have applied supervised methods using different quality 

measures. Some of them have used indices such as Area Fit Index (Lucieer and 

Stein 2002), Spatial Overlap Index (Zou et al. 2004) and the Quality Rate 

(Weidner 2008) for quantifying the goodness of the segmentation. Others have 

tried to use measures based on shape such as area and perimeter (Neubert and 

Meinel 2003), circularity (Yang et al. 1995) and shape index (Neubert and 

Meinel 2003) unlike Cardoso and Corte-Real (2005), Jiang et al. (2006) and 

Gavet and Pinoli (2011) which have used distance functions on the evaluation 

procedures. On the other hand, Clinton et al. (2010) has used combined 

measures whereas Ramón et al. (2001) has presented a hybrid measure based on 

empirical goodness and empirical discrepancy methods.  

Despite many studies that assess the quality of the segmentation process, 

there are few that provide subsidies for choosing the optimal scale parameter 

based on the evaluation of quality measures. Thus, the purpose of this study is to 

present a parameter selection procedure based on measures of segmentation 

goodness for selecting the appropriate scale parameter value from a set of 

potential combinations. 

 

2. Methods 

 
2.1. Data and study area 

 

A high spatial resolution RapidEye image from the southern region of 

Minas Gerais, Brazil, was used (Figure 1). RapidEye imagery presents 5,0 m 

spatial resolution with five channels: blue (0,44 – 0,51 µm), green (0,52 – 0,59 

µm), red (0,6, – 0,68 µm), red edge (0,69 – 0,73 µm) and near infra-red (0,76 – 
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0,85 µm) and a radiometric resolution of 12 bit. This data set was acquired at 

standard processing level (orthorectified) by Minas Gerais state government in 

June, 2010. 

 

Figure 1. Study area located in Minas Gerais. Brazil. 

 

This image has an area of 77 x 77 km over the municipalities of São 

Vicente de Minas, Minduri, Cruzília, Luminárias and Carrancas. The area is part 

of the Rio Grande basin, called Campo das Vertentes. The main types of native 

vegetation are savannah, seasonal forest, rocky field and gallery forest. The area 

is located within the transition between two major Brazilian Biomes. The 

Atlantic Rainforest is one of the most important Biomes in the country and 

originally covered about 1 million square kilometers within 17 states, 

representing 16% of the country area (Galindo-Leal and Câmara 2003). 

However, forested areas within this Biome have been decreasing since the 

colonial period due to agricultural cycles and to the expansion of cultivated 

fields. Nowadays, forests cover approximately 98000 square kilometers (8% of 

the original cover) and are still under strong anthropogenic pressure. The land-
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cover in the study area basically includes remnants of native grassland, rocky 

fields, savannah and forest, as well as open water, pasture, eucalyptus, and 

crops.  

 

2.2. Image segmentation 

 

Image segmentation represents the first step in object-based image 

analysis. Many segmentation algorithms have been developed in recent years 

and all of them aim at deriving homogeneous image segments. The multi-

resolution image segmentation (MRS) implemented in eCognition Developer® 

software is a frequently used algorithm in Earth sciences (Blaschke 2010). The 

MRS algorithm uses a “bottom-up” region neighboring objects based on a set of 

user-defined parameters such as scale, color/shape, and smoothness/compactness 

defining a “stopping threshold”. Additional information regarding the 

segmentation algorithm can be found in Benz et al. (2004). 

For this study, image segmentation was performed using 9 different 

scale parameters values ranging from 100 to 1000 (100, 150, 200, 250, 300, 400, 

500, 750 and 1000) using  the MRS. Thus, the segmentation and further 

evaluation measures could be analysed at various scales. For each scale 

parameter, a set of three combinations of color/shape values was used, 

comprising 27 scale+color/shape combinations. The smoothness/compactness 

value were held constant (0.5). The values of color/shape used were 0.1, 0.3 and 

0.5 thereafter mentioned as A, B and C, respectively. All of the segmented 

images were then exported as polygon shape files for further analysis in ArcGIS 

9.8 
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2.3. Measures of segmentation goodness  

 
2.3.1. Reference digitization 

 

According to the available literature, there are a large number of 

segmentation evaluation methods. We focused particularly on the supervised 

methods in which a set of manually delineated objects will be used as reference 

to compare to the segmentation results. 

All reference objects used in this study were well segmented since their 

boundaries are very sharp. Therefore, we relied on our past experience with the 

study area as well as conducting object-based classifications in these land-cover 

classes to guide the selection of reference objects. 

In this study, 20 reference objects from five land-cover classes - 

Bareland, Eucalyptus, Grassland, Forest remnants and Pasture - were manually 

delineated using ENVI 4.8 (Figure 2). For each class, we carefully selected the 

objects varying in shape, size and location. 
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Figure 2. Representation of the 20 manually delineated reference objects from the five 

different land-cover classes. From the top left: Bareland, Eucalyptus, 
Grassland, Forest remnants and Pasture marked in red, light blue, green, white 
and blue respectively. 

 
For the purpose of comparison, we also delineated 15 objects – 

thereafter referred as ‘test objects’ – in order to verify the segmentation results 

produced by the optimal scale parameter value presented by the proposed 

procedure based on the reference objects (Figure 3).  
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Figure 3. Representation of the 15 manually delineated test objects from the five 
different land-cover classes. From the top left: Bareland, Eucalyptus, 
Grassland, Forest remnants and Pasture marked in yellow, white, light blue, 
black and maroon, respectively. 

 

2.3.2. Segmentation Evaluation Criteria 

 

Since under-segmentation and over-segmentation are important issues 

for GEOBIA, the criteria for segmentation evaluation used in this study are 

mainly based on goodness measures, which give an indication of under-

segmentation and over-segmentation. 

We computed various goodness measures for each combination of 

segmentation parameters and different reference object sets (Bareland, 

Eucalyptus, Grassland, Forest remnants and Pasture).  

For the purposes of describing the goodness measures used in this study, 

let us consider X = { xi: i = 1…n} as the set of n training objects, where n = 20; 

and Y = { yj: j = 1…m} as the set of m objects from the results of different 

segmentations (Figure 4a).  
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Figure 4. Schematic representation of the objects (dashed gray line) overlapping the 
reference object (solid black line). (A) The Y set indicating all the objects 
overlapping the reference object, including those with more than 25% of extra 
pixels (in light gray) (1 and 2). and; (B) the Ya subset indicating the relevant 
objects within the reference and the lost areas (dark gray) due the exclusion of 
the objects 1 and 2. 

 

Therefore, let us consider the Elementary Set Theory to describe 

area(xi∩yj) as the area of intersection of the training object xi with the objects yj; 

and area(xi∪yj) as the union of the area from the training object xi with the 

objects yj. In this study, our evaluation was performed only in the objects yj 

which are relevant to the training object xi, according to the following rule: 

 

• Ya = yj: area(xi ∩ yj) / area(yj) > 0,75. 

 

This rule will ensure that Ya will contain only objects with more than 

75% of its area within the reference object. In other words, objects with more 

than 25% of extra pixels may not properly represent the reference. This is an 
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indication of under-segmentation, which is not desired. The exclusion of these 

objects causes a loss of area, which is also an indication of under-segmentation 

(Figure 4b). 

 

Möller et al. (2007) proposed the Relative Area (RA) metric: 

 

( )
,

( )
i j

j
j

area x y
RA y Y

area y

∩
= ∈  (1) 

 

According to Möller et al. (2007), RA ∈ [0,1] with 1 being an ideal 

segmentation. 

Weidner (2008) proposed the Quality Rate (QR) index: 
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∪
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Where, QR ∈ [0,1] with 0 being an ideal segmentation. 

Clinton et al. (2010) evaluated a modification of the RA metrics and both 

metrics were combined via Root Mean Square: 
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Both metrics are within the interval [0,1], with 0 being ideal. According 

to the authors, these modifications were made to compare with the original RA 

measure and to evaluate the measures over the relevant objects for each 

reference. These modifications are suitable for this study as we are evaluating 

the measures over the Ya subset. 

Marpu et al. (2010) proposed a simple way to analyse segmentation 

results based on five different criteria: 

• Percentage of the area of the biggest overlapping object after excluding 

the extra area; 

• Percentage of lost area; 

• Percentage of extra area; 

• Number of reference objects that lost more than 25% of its area, and; 

• Number of reference objects that gained more than 25% of its area. 

For this study, we evaluated each of these five criteria as separated 

indices: 

max
max
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%BigObj, %LstArea and %ExtArea are in [0,1], where %BigObj = 

100% defines a good segmentation, where the biggest sub-object match the 

reference object exactly, and, %LstArea and %ExtArea with 0% being ideal.  

For the third and fourth criteria, we simply computed the number of 

reference objects which had values greater than 25% for the measures described 

in Eq. (7) and (8).  These criteria were used as a penalty factor for the global 

score (described in the following section). This factor was calculated using the 

formula: 

 

1
*

10
j jpf N=  (9) 

 

Where pfj is the penalty factor for the scale parameter j and Nj is the 

number of objects that gained or lost more than 25% of its area in the scale 

parameter j. 

We decided to combine the third and fourth criteria into a penalty factor 

(pf) since the reference objects that gained or lost 25% are strongly deformed 

and this scale parameter might not be suitable to effectively represent the objects 

from that land cover class. 

With the exception of the Relative Area, which was evaluated on the Y 

subset, all the goodness measures used in this study were evaluated on the Ya 

subset. 
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2.3.3. Metrics similarity 

 

In this work, a correlation coefficient was used to represent the 

relationship between the goodness measures. This method simply examined 

when there is a tendency for two measures to increase or decrease together, 

called positive correlation, or, for one to increase as the other decreases and vice 

versa, called negative correlation. The Pearson correlation coefficient is 

conventionally defined between -1 and +1, where -1 represents strong evidence 

of negative correlation and; 1 represents strong evidence of positive correlation. 

Values near 0 tend to occur when there is little or no correlation between the two 

variables.  

The Pearson rank correlation coefficient (r) can be calculated as follows: 

 

1

1
*

1

n
i i

x yi

x X y Y
r

n S S=

   − −=    −    
∑  (10) 

 

Where r is the Pearson rank correlation coefficient considering the α 

value of 0.05; n is the sample size; xi is the value for the variable x; X is the 

mean value for the variable x; Sx is the standard deviation for the variable x; yi is 

the value for the variable y; Y is the mean value for the variable y and; Sy is the 

standard deviation for the variable y. 

In this context, a r value were calculated for each possible pair of 

goodness measures used in this study in order to verify if these measures are 

correlated. Two measures with strong correlation values mean that just one of 

them can be used to effectively evaluate the segmentation. 
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2.3.4. Identifying the optimal image segmentation scale 

 

To evaluate the segmentation generated at each scale described in the 

Section 2.2, a score for each measure described in the previous section were 

calculated. The scores were based on a single-class approach and on a multi-

class approach. In the first case, we quantified the quality based on the mean 

values for the measures considering each class separately. In the second case, the 

multi-class approach used the mean value for the measures from all the reference 

objects.  

The optimal image segmentation scale relative to the single and multi-

class approach was defined as the scale that, after considering each score, 

maximized the final global score. 

For the purpose of describing the score and global score we used, shall 

us consider K = {ki: i = 1…n}, as the set of n goodness measures used in this 

study. The score ranged from 0 to 10. Thus, each measure had a coefficient (a): 

 

max( ) min( )
,

10
i i

i

k k
a k K

−= ∈  (11) 

 

Where, max(ki) is the maximum value of the i measure among the 27 

scale parameter combinations, and; min(ki) is the minimum value. The 

coefficient a represents the value that each measure must increase or decrease in 

their values to get one point from the score. For example, a goodness measure ki 

has 0 as the ideal value. In this case, its minimum value min(ki) gets the highest 

score (10.0). The next score (9.0) will be given to the min(ki) + a value. Then, 

the next point (8.0) will be given to the min(ki) + 2*a, and so forth. The same 

approach was used to the measures that have 1 as the ideal value. This method 
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will ensure that each goodness measure will have a minimum and a maximum 

score taking into consideration the distribution and amplitude of its values. 

The global score can be calculated as follows: 

 

1 1
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n n

j i j i

i i

GS S pf S
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Where GSj is the global score for scale parameter j; Si is the score for the 

measure i, and pfj is the penalty factor for the scale parameter j. 

As most goodness measures give an indication of under-segmentation 

and over-segmentation, their S value is equally weighted. The %BigObj is the 

only measure with double-weighted S value (with the highest score as 20). This 

measure represents how much the segmentation matches the reference object. 

This measure must be taken under consideration since the higher values 

represent a perfect segmentation, which is desired. A stricter evaluation can be 

carried out by changing the weights of the measures to verify their influence on 

the global score. 

 

2.3.5. Visual inspection of the segmentation results 

 

After selecting an optimal image segmentation scale value for each 

class, the image objects produced by these parameters were compared to the test 

objects (shown in Figure 3). The quality of the segmentation depends not only 

on the reference objects, but how well these test objects are represented; 

otherwise we can assume that the potential segmentation parameter value is only 

suitable for these specifics reference objects and may not be correctly judged as 

the best parameter to represent a specific land cover class. 
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For the evaluation, we based on a qualitative visual inspection of the test 

objects. We intended, primarily, to identify under-segmented test objects. As 

mentioned, over-segmented features are more likely to be rebuilt than an under-

segmented feature. Thus, an under-segmented feature is not desired as it may not 

represent the real object and it can strongly affect the overall accuracy of the 

classification. 

 

3. Results and discussion 

 

3.1. Optimal image segmentation scale 

 

The Global Score (GS) values for the selected classes as well as the 

individual goodness values for each land cover class are summarized in Table 1. 

In this analysis, we focused on selecting the scale parameter (among the 27 used 

in this study) which produced the highest GS according to each goodness 

measures.  

Comparison of GS values for the single-class approach and for the 

multi-class approach showed the segmentation evaluation process yielded a GS 

ranging from 50 to 59. A brief analysis of Table 1 shows that each land cover 

class obtained a different scale parameter: 300A for Bareland, 750A for 

Eucalyptus, 400C for Grassland, 150B for Forest remnants, 100C for Pasture 

and 400A when considering all reference objects together. This result confirms 

the fact of a single-scale approach may not be appropriate to represent the entire 

scene. For example, we found the combination 750A was the most suitable 

parameter to represent the class Eucalyptus. However, if we consider this 

parameter in a single-scale segmentation, all the other classes will be strongly 

under-segmented. Liu and Xia (2010) found that classification accuracy 

decreased substantially when over or under-segmentation occurred. In fact, this 
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issue is more evident in under-segmentation because under-segmented objects 

contain more than one land cover class. On the other hand, if we consider the 

100C, which is the most suitable parameter for Pasture, some classes will be 

over-segmented. 

A stricter evaluation of Table 1 shows that none of the goodness 

measure used in this study had the highest scores for all the selected land cover 

classes. This is evident when considering the measure %BigObj. Despite the 

lower values - and consequently lower scores - for Vegetation and Pasture, these 

classes showed the highest GS values. In fact, this is due the non-participation of 

pf on their GS values, making them the highest GS. 

 

 

 

 

Table 1. Selected optimal segmentation parameters values according to its highest global 
score values. 

 Bareland Eucalyptus Grassland Vegetation Pasture 
All 

Classes 
QR 0.03257 0.00215 0.01985 0.03533 0.01976 0.05758 
Score 7 10 8 8 9 0 
RA 0.22700 0.20785 0.20316 0.29545 0.53707 0.20073 
Score 5 2 4 6 10 3 
OverSeg 0.02364 0.11847 0.02978 0.06821 0.07540 0.02712 
Score 4 0 8 9 3 8 
UnderSeg 0.03257 0.00215 0.02620 0.03533 0.01976 0.05758 
Score 7 10 5 8 9 10 
RMS 0.03259 0.08381 0.02847 0.06479 0.05558 0.07339 
Score 9 0 8 8 8 4 
% Big Obj 59.92% 84.41% 95.64% 44.35% 32.24% 79.41% 
Score 12 18 20 6 4 18 
%Lst Area 5.69% 10.76% 4.68% 10.36% 7.18% 8.54% 
Score 6 0 8 6 7 6 
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%Ext Area 3.33% 0.16% 2.60% 3.54% 1.87% 6.46% 
Score 7 10 6 8 9 10 
N 1 0 2 0 0 3 
Total 
Score 

57 50 67 59 59 59 

pf 10% 0% 20% 0% 0% 15% 
Global 
Score 

51.3 50 53.6 59 59 50.15 

Selected 
Scale 300A 750A 400C 150B 100C 400A 

 

Our results indicate that the proposed procedure of the parameter 

selection is possible. However, this process is still subject to some expert 

judgment, since a goodness measure or set of measures must be chosen and will 

influence the global score. A similar procedure was proposed by Costa et al. 

(2008) and Happ, Feitosa and Street (2012) where they have used an automatic 

method based on genetic algorithms to automatically adjust the segmentation 

parameters to a given set of reference objects. Despite of the robustness of their 

method, it is still subject to some expert judgment regarding the selection of the 

parameters to be tested, as well as the manually delineated objects. 

In addition, we have used measures for both under and over-

segmentation problems, and the weights assigned to each measure seem to 

influence in the global score and, consequently, the ultimate selection. Also, the 

choice of training objects influences the final selection. Different observers will 

likely choose different objects and manually segment them differently. 

However, this must be considered an advantage of this approach: the best 

segmentation results can be achieved relative to the set of objects which is 

considered most important to each analyst.  

Finally, we strongly feel that this procedure will help to objectively 

choose segmentation results.  
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3.2. Visual assessment of segmentation results  

 

For the purpose of evaluating the segmentation produced by the selected 

segmentation parameter values, a visual assessment of the test objects was 

performed. Based on visual assessments and interpretation of the test objects, all 

the scale parameters selected by the proposed procedure were able to depict very 

well these objects. Our results showed good correspondence between the 

segmentation results and most of the test objects. However, we observed that 

three test objects were strongly under-segmented: the Grassland test object D 

and the Eucalyptus test objects F and H (Figure 5). This is due to the fact that 

these classes showed the highest values for the scale parameter, 400 and 750, 

respectively. Also, a brief analysis of the objects in the Figure 3 shows that these 

objects are close to other spectrally similar features. Therefore, the set of 

parameters selected for the Grassland includes a proportion of 0.5/0.5 (C) for 

color/shape where the segmentation was performed equally considering the 

spectral features and the shape of the object. 

Despite their well-defined boundaries, these factors may have led the 

under-segmentation of these objects. On the other hand, the over-segmented test 

objects (from J to O) may not represent a problem in a further post-segmentation 

analysis (e.g. classification) as the sub-objects are contained within the borders 

of the test object and present the same spectral characteristics. It is essential to 

be able to determine whether inaccuracy in the classification process is due to a 

poor classifier or a poor segmentation, or even both. 
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Figure 5. Representation of the manually delineated test objects with the segmentation results for ‘Bareland’ (A,B and C), 

‘Eucalyptus’(D, E and F), ‘Grassland’ (G, H and I), ‘Forest remnants’ (J, K and L) and ‘Pasture’ (M, N and O). 
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3.1. Metrics similarity 

 

In this study, the Pearson correlation coefficient was used to represent 

the relationship between the goodness measures. We calculated the r coefficient 

for each class separately as well as considering all objects together. The results 

are summarized in the Tables 2 to 7. We established critical value of 0.80, which 

means a high correlation between the metrics and in all tables we highlighted the 

r coefficients above this value. 

 

Table 2. Pearson correlation coefficient (r) – Bareland 

  •QR •RA •OS •US •RMS •%BG •%LP •%EP 

•QR 1.00        
•RA -0.32 1.00       
•OS -0.43 0.54 1.00      
•US 1.00 -0.33 -0.42 1.00     

•RMS 0.36 0.29 0.60 0.38 1.00    
•%BG 0.85 -0.54 -0.25 0.87 0.42 1.00   
•%LP -0.10 0.48 0.94 -0.08 0.81 0.05 1.00  

•%EP 0.99 -0.36 -0.54 0.99 0.28 0.82 -0.22 1.00 
 

Table 3. Pearson correlation coefficient (r) – Eucalyptus 

  •QR •RA •OS •US •RMS •%BG •%LP •%EP 

•QR 1.00        
•RA -0.11 1.00       
•OS -0.03 0.47 1.00      
•US 1.00 -0.11 -0.03 1.00     

•RMS 0.45 0.31 0.84 0.45 1.00    
•%BG 0.70 -0.56 0.10 0.70 0.45 1.00   
•%LP 0.57 0.35 0.72 0.57 0.91 0.47 1.00  

•%EP 1.00 -0.14 -0.05 1.00 0.45 0.71 0.56 1.00 
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Table 4. Pearson correlation coefficient (r) – Grassland 

  •QR •RA •OS •US •RMS •%BG •%LP •%EP 

•QR 1.00        
•RA 0.45 1.00       
•OS 0.55 0.62 1.00      
•US 1.00 0.45 0.55 1.00     

•RMS 0.63 0.61 0.99 0.63 1.00    
•%BG 0.39 0.08 0.50 0.39 0.52 1.00   
•%LP 0.68 0.63 0.98 0.68 0.99 0.52 1.00  

•%EP 0.99 0.41 0.49 0.99 0.59 0.39 0.64 1.00 
 

Table 5. Pearson correlation coefficient (r) – Eucalyptus 

  •QR •RA •OS •US •RMS •%BG •%LP •%EP 

•QR 1.00        
•RA -0.08 1.00       
•OS -0.56 0.64 1.00      
•US 1.00 -0.08 -0.56 1.00     

•RMS 0.50 0.51 0.38 0.50 1.00    
•%BG 0.92 -0.06 -0.46 0.92 0.51 1.00   
•%LP -0.17 0.85 0.79 -0.17 0.49 -0.11 1.00  

•%EP 1.00 -0.13 -0.61 1.00 0.46 0.91 -0.24 1.00 
 

Table 6. Pearson correlation coefficient (r) – Forest remnants 

  •QR •RA •OS •US •RMS •%BG •%LP •%EP 

•QR 1.00        
•RA -0.29 1.00       
•OS -0.47 0.45 1.00      
•US 1.00 -0.29 -0.47 1.00     

•RMS 0.63 0.07 0.35 0.63 1.00    
•%BG 0.71 -0.73 -0.34 0.71 0.45 1.00   
•%LP 0.46 0.05 0.51 0.46 0.95 0.39 1.00  

•%EP 1.00 -0.31 -0.48 1.00 0.63 0.71 0.46 1.00 
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Table 7. Pearson correlation coefficient (r) – All classes 

  •QR •RA •OS •US •RMS •%BG •%LP •%EP 

•QR 1.00        
•RA -0.16 1.00       
•OS -0.30 0.86 1.00      
•US 1.00 -0.16 -0.30 1.00     

•RMS 0.54 0.60 0.60 0.54 1.00    
•%BG 0.92 -0.40 -0.46 0.92 0.36 1.00   
•%LP 0.14 0.82 0.88 0.14 0.81 -0.05 1.00  

•%EP 0.99 -0.24 -0.38 0.99 0.48 0.93 0.04 1.00 
 

As shown in the Tables 2 – 7, most of the metrics are highly correlated. 

Feitosa et al. (2010) tested the Kendal and the Spearman rank correlations to 

express the similarity between the metrics. They have found that most of the 

metrics were highly correlated. 

 A stricter analysis of our results shows that some metrics presented high 

values for the r coefficient in all cases such as QR and US; QR and %EP, and 

US and %EP. It was also possible to verify that the correlation coefficients were 

1.0 in most of the cases, which means that these metrics are, technically, the 

same. However, these three metrics were proposed by three different studies. In 

our study, these metrics were completely redundant which led us to conclude 

that only one would be sufficient to evaluate the segmentation and, also, this 

redundancy might have caused an unnecessary increase of the Global Score. As 

seen in the Eq. 12, the higher the value of S, the greater the impact of the penalty 

factor fp in the Global Score. Consequently, this redundancy may have indirectly 

misled the selection of the scale parameter.  

Hence, a stricter evaluation of this procedure may be carried out by 

eliminating the redundant measures and evaluating the impact in the Global 

score (GS). 
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4. Conclusions 

 

In this study, we have presented a scale parameter selection procedure 

based on segmentation goodness measures for selecting the appropriate image 

segmentation parameter values from a set of potential combinations. Until now, 

no general approach for selecting parameter exists. We concluded that these 

measures are not only useful for the selection of segmentation parameters from a 

pool of potential combinations, but also have utility in reporting the overall 

accuracy of segmentation, based on reference objects. The advantage of our 

approach is the selection of a segmentation parameter not based on subjectivity 

such as expert opinion or visual interpretation. We could also reinforce that a 

single-scale is not suitable to represent the entire scene. 

In a future work, we intend to use this procedure for evaluating different 

land-cover classes. Additionally, we intend to select new goodness measures and 

increase the number of reference objects as well as carry out a previous 

exploratory analysis in order to eliminate the redundant measures. 
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Abstract: An object-based image analysis approach was used for classifying 
land-cover classes over a vegetated landscape using three supervised machine 
learning algorithms: Decision Tree (DT), Random Forest (RF), and the Support 
Vector Machine (SVM). The classification data was a 5m spatial resolution 
RapidEye image. Classification results provided by the machine learning 
algorithms were compared in order to evaluate the applicability in the 
classification of landscapes with high diversity of environmental settings. In 
terms of overall accuracy, the RF out-performed both DT and SVM with 
85.05%. The difference between DT and SVM overall accuracy was 1.18%. A 
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visual inspection of the maps was also carried out. We observed the RF map, in 
general, depicted more accurately all the land-cover classes in the region than 
the other maps produced by DT and SVM algorithms. 
Keywords: object-based, decision tree, random forest, support vector machine 

1. Introduction 

 

The use of remotely sensed images for mapping and monitoring land 

cover had fundamental importance in recent decades, in particular, due the 

development of new techniques and computer programs that enhanced the 

analysis and manipulation of these digital products. Notable advances are being 

made in land cover mapping due the technological advancement of the recent 

and upcoming sensors. These advances rely mostly in the increasing the spatial 

resolution and in the introduction of additional bands in multi-spectral sensors. 

RapidEye represents a constellation of 5 multispectral high-resolution 

sensors. These satellites are equally spaced around a sun-synchronous orbit and 

have a spatial resolution of 5 meters (resampled). Recent studies in land cover 

mapping suggest that pixel-based approaches have disadvantages for such high 

resolution imagery. One alternative to the pixel-based approach is the 

framework known as GEOBIA – Geographic Object-Based Image Analysis 

(Hay and Castilla 2008). Previous studies have proved its advantages over the 

well-known pixel-based approach (Belaid et al. 1992; Herrera et al. 2004; Yu et 

al. 2006; Myint et al. 2011). The basic role of this new approach is to merge the 

adjacent pixels into spectrally homogeneous objects and lead the classification 

process as the objects being the minimum unit of analysis. Object-level 

characteristics including shape, size, texture and context within neighbourhoods 

or hierarchies can all be incorporated into classification decision models. While 

these additional descriptors can provide improved class or feature 
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discrimination, incorporating this new information can increase the complexity 

of the image analysis process. 

Over the last years, machine learning algorithms have shown great 

potential to deal with a high number of predictors from the object-based 

approach as well as to improve the accuracy and reliability of remote sensing 

image classification.  Several studies have tested a variety of machine learning 

algorithms in both classification approaches: pixel-based and object-based. In 

the context of the pixel-based approach, studies such as Huang et al. (2002) 

compared the accuracies from pixel-based classification produced using four 

different classification algorithms: support vector machines, decision trees, a 

neural network classifier, and the maximum likelihood classifier (MLC). Their 

results showed that the accuracy of the Support Vector Machine classifier 

outperformed the other three classification algorithms. Pal (2005) compared the 

accuracies of Support Vector Machines and Random Forests (Breiman 2001) 

using Landsat Enhanced Thematic Mapper (ETM+) in a pixel-based 

classification. Their results showed that both algorithms performed equally well. 

Gislason, Benediktsson and Sveinsson (2006) compared a Random Forest 

approach to a variety of decision tree-like algorithms using pixel-based 

classification of Landsat MSS data. They found that the selected tree-based 

algorithms tested performed similarly, but that the Random Forest algorithm 

outperformed the standard implementation of the Decision tree proposed by 

Breiman (2001). Chan and Paelinckx (2008) used Random Forest and Adaboost 

for the classification of ecotopes using airborne hyperspectral imagery. Their 

results suggested that both algorithms showed no significant difference in the 

overall accuracy. Otukei and Blaschke (2010) compared the Maximum 

Likelihood classifier, Support Vector Machine, and Decision Trees algorithms in 

a pixel-based approach for land-cover change detection, and found Decision 

Trees performed better than the others. Laliberte et al. (2006) used an object-
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based approach on Quickbird imagery to compare the Nearest Neighbour 

classifier with Decision Tree algorithms. Their study found that Decisions Trees 

produced better overall classification accuracies than the Nearest Neighbour 

classifier. Stumpf and Kerle (2011) used the object-based approach on 

Quickbird, IKONOS, Geoeye-1, aerial photographs data for mapping landslides. 

They used the Random Forest classifier and they found accuracies between 73% 

and 87%. 

Therefore, comparisons between pixel-based and object-based image 

analysis using machine learning algorithms have also been led (Yan et al. 2006; 

Platt and Rapoza 2008; Myint et al. 2011; Duro, Franklin and Dubé 2012).  

According to these comparisons, object-based approach produced better overall 

accuracies and outperformed the pixel-based approach. In general, many 

comparisons were conducted using a relatively simple classifier, like Nearest 

Neighbour, for the object-based classifications.  

Considering the above comparisons and taking advantage of recent 

advances in object-based image analysis (OBIA) and machine learning 

algorithms, this study aims to examine the object-based approach in conducting 

classifications of a vegetated area in RapidEye data with a selection of machine 

learning algorithms: Decisions trees, Random Forest and Support Vector 

Machine. 

 

2. Methods 

 

2.1. Data and study area 

 

A high-resolution RapidEye image data from the southern region of 

Minas Gerais, Brazil, is used (Figure 1). This data has a 5,0 m spatial resolution 

with five channels: blue (0,44 – 0,51 µm), green (0,52 – 0,59 µm), red (0,6, – 
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0,68 µm), red edge (0,69 – 0,73 µm) and near infra-red (0,76 – 0,85 µm) and a 

radiometric resolution of 12 bit. This data set was acquired at standard 

processing level (orthorectified) by Minas Gerais state government in June, 

2010. 

 
Figure 1. Study area located in Minas Gerais, Brazil. 

 

This image has an area of 77 x 77 km over the municipalities of São 

Vicente de Minas, Minduri, Cruzília, Luminárias and Carrancas. The area is part 

of the Rio Grande basin, in the micro region of Lavras and its vegetation is 

characterized as an encounter between Brazilian savanna and Brazilian Atlantic 

Rainforest, forming rocky fields and gallery forests. The Brazilian Atlantic 

Rainforest is one of the most important biome in the country and originally 

covered approximately 1 million square kilometers within 17 states, representing 

16% of the country (Galindo-Leal and Câmara 2003). However, the Brazilian 

Atlantic Rainforest has been under degradation since the colonial period due the 

agricultural cycles and the expansion of cultivated areas. Hence, it occupies 

approximately 98000 square kilometers, or 8% of its original area and is still 

under strong anthropogenic pressure resulting in a high risk of extinction.  
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The land-cover in the study area basically includes: grassland, forest 

remnants, pasture areas, eucalyptus and open water. We intentionally selected 

this image by its wide variety of environmental settings due these land-cover 

classes which have homogeneous internal properties and most of the classes are 

separated by well-defined boundaries. Therefore, this area is under constant 

degradation due the agricultural activities and its mapping is an important source 

of information about how this degradation has been occurring over the years. 

 

2.2. Image segmentation and feature selection 

 

Image segmentation represents the first step in object-based image 

analysis. Many segmentation algorithms have been developed in recent years, all 

of them aiming a homogeneous image segments. The multi-resolution image 

segmentation (MRS) implemented in eCognition Developer® software is a 

frequently used algorithm in Earth sciences (Blaschke 2010). The MRS 

algorithm uses a “bottom-up” region neighboring objects based on a set of user-

defined parameters such as scale, color/shape, and smoothness/compactness 

defining a “stopping threshold”. Additional information regarding the 

segmentation algorithm can be found in Benz et al. (2004). 

The initial RapidEye image analysis included segmenting the image at a 

relatively fine scale (400) using eCognition Developer® version 8.0. The MRS 

offers the possibility to assign different weights to the spectral bands of the 

image. In this study, all the spectral bands (blue, green, red, red edge and near 

infrared) were equally weighted. The value of color/shape used was 0.1 and 

compactness/smoothness was 0.5. We intentionally chose this combination of 

parameters according to a previous analysis in which 27 scale+color/shape 

combinations were used to generate different scenarios for segmentation 

evaluation. Our results showed that the 400 scale was the most suitable for all 
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the classes. This parameter sufficiently delineated small features of the scene 

such as small forest remnants, small areas of pasture and agriculture. 

Following the image segmentation process, object features were selected 

for use in the object-based classification. Selecting object features can be a 

subjective process based on the user knowledge or like in Yu et al. (2006), 

where the authors used a CART approach to select the features to use in the 

classification. In this study we focused on our prior knowledge of the area to 

select the object features. These features are listed in Table 1. 

 

Table 1. Object-features used in the classification process. 

Object features 
Spectral bands mean values* 

Band Ratios (NDVI and SAVI) 
Brightness 

Spectral information 

Max difference between pixel values 
Mean* 

Homogeneity* 
Texture 

GLCMalldirections 
Standard deviation* 

Area 
Roundness 
Compacity 

Boundarie index/Shape 
Geometry 

Length/Width 
* Object features were calculated for each spectral band 

 

In addition to the features found in the software, the NDVI index (Rouse 

1973) (Eq.1) and SAVI (Huete 1988) (Eq. 2) were also calculated to widen the 

feature input for the classification process. 

The global NDVI and SAVI can be calculated as follows: 
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NIR RED
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−= +
+ +

                        (2) 

 
Where NIR is the reflectance in the near infrared band; RED is the 

reflectance in the red band; and L represents the amount or cover of green 

vegetation. In regions highly vegetated, L=0; and in areas with no green 

vegetation, L=1. In this study we used L=0.5. 

The total number of object features available to the object-based 

classification is 38, considering that some features (marked with ‘*’) were 

calculated for all spectral bands, as seen in Table 1. The unmarked features were 

calculates considering individual image objects. 

 

2.3. Sampling data 

 

In this study a visual interpretation of the RapidEye imagery as well as 

the data from Mapeamento da Flora Nativa e dos Reflorestamentos de Minas 

Gerais (Scolforo, Carvalho and Oliveira 2008) were used to select the ground 

reference data. Eight broad land-cover classes were selected for this study: 

bareland, grassland, eucalyptus, forest remnants, water bodies, pasture areas, 

clouds and shadow. For the purpose of selecting samples to use in the machine 

learning algorithms, a random sampling approach was used. At first, 1100 

objects were randomly selected within the scene. Image objects produced using 

the MRS algorithm can vary in size and may contain more than one land-cover 

class. Thus, these objects were carefully examined using visual interpretation as 

well as the data from Mapeamento da Flora Nativa e dos Reflorestamentos de 

Minas Gerais (SCOLFORO, CARVALHO and OLIVEIRA 2008) to assess the 
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homogeneity of the land cover types in the image objects and to ensure all the 

classes were proportionally represented. Objects with more than one land cover 

type were not used, leaving a total of 1005 objects. Therefore, each object was 

classified as one of the eight classes. These objects were then split into two 

smaller sets of samples using random proportional sampling, referred as training 

and test samples. Approximately 70% of the samples (684) were used to train 

the machine learning algorithms and 30% of the samples (321) were used for 

accuracy assessment purposes. For setting the parameters and testing the models 

used by the machine learning algorithms, we used a repeated k-fold cross-

validation based on the training data set only. We did not use the test sample in 

this evaluation. 

 

2.4. Accuracy Assessment 

 

Two measures for assessing the accuracy for thematic maps were used 

in this study: i) overall accuracy and ii) the Kappa coefficient. The overall 

accuracy is easily interpretable as the proportion of correctly classified samples, 

which gives a general overview of the classification results. For each 

classification, a confusion matrix was presented. A confusion matrix is a two-

dimension contingency table, formed by reference data and thematic data, where 

the reference data is presented as the columns of the matrix and the thematic 

data, is presented as rows in the matrix. The diagonal entries represent the 

correctly classified samples and the off-diagonal entries represent the 

misclassified samples. From this matrix, accuracy measures were calculated 

such as overall accuracy, user's and producer's accuracy and Kappa coefficient. 

All these indices were calculated using the test samples. 
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2.5. Setting up the machine learning algorithms parameters 

 

The construction, tuning and accuracy assessment of the models were 

performed using R version 2.15, a multiplatform, open-source language and 

software for statistical computing (R Development Core Team 2010). A quick 

review of the available literature shows that R has been intensively used for 

classification of remote sensing data using machine learning algorithms 

(Gislason, Benediktsson and Sveinsson 2004; Lawrence and Sheley 2006; 

Sesnie et al. 2008; Stumpf and Kerle 2011; Duro, Franklin and Dublé 2012).  

For creating the machine learning algorithms used in this study, we used 

several packages within the R environment: 

• For the Decision Tree models (DTs), we used the recursive partitioning 

‘rpart’ package created by Therneau and Ripley (2010) based on the 

CART algorithm developed by Breiman et al. (1984);  

• For the construction of the Random Forest models (RFs) we used the 

‘randomForest’ package (Liaw and Wiener 2002). For further 

information about RF algorithms and its codes, we encourage readers to 

refer to Breiman (2001), and; 

• For the Support Vector Machine (SVMs) we used the ‘kernlab’ package 

(Karatzoglou et al. 2004). 

Each of the algorithms used in this study has parameters that need to be 

defined by the user. To avoid the subjectivity of randomly choosing these 

parameters, we examined a pool of potentials parameters using all three machine 

learning algorithms. 

For each model, a confusion matrix was generated using the original 

training samples. We considered the optimum parameters those that achieved the 

highest value of overall accuracy in this process. This approach will ensure that 

only models with higher accuracy will be used in the classification process. 
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2.5.1. Decision tree based models 

 

A decision tree classifier is a non-parametric classifier that does not 

require any a priori statistical assumptions to be made regarding the distribution 

of data. The tree is composed of a root node (formed from all of the data), a set 

of internal nodes (splits), and a set of terminal nodes (leaves). The DT 

classification is a procedure which recursively partitions a data set into smaller 

subdivisions on the basis of a set of tests defined at each split (or node) in the 

tree. The decision of each node is on the form: 

 

1

n

i i k

i

a x c
=

≤∑ ; for multivariate decision tree, or xi > ck for univariate 

trees, 

 

where xi is the ith input feature, ck is a suitably chosen threshold and ai is a 

vector of linear discriminate coefficient (Brodley and Utgoff 1992). The DTs are 

known to produce results of higher accuracies in comparison to traditional 

approaches such as the ‘box’ and ‘minimum distance to means’. In addition, 

they handle nonlinear relations between features and classes, allow for missing 

values, and are capable of handling both numeric and categorical inputs. 

For the DTs, the parameter ‘maximum depth’ is a user-defined 

parameter and it represents the maximum depth of any single node of the trees. 

In general, higher values of ‘maximum depth’ will generated more complex 

trees whereas low values will produce less complex trees. In both cases, it may 

affect the overall accuracy. For the purposes of choosing the value of ‘maximum 

depth’ which provides a model with higher overall accuracy, we tested eight 

values of ‘maximum depth’: 4, 6, 8, 10, 12, 14, 16, 18 and 20. The parameter 
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with the highest value of overall accuracy was considered the optimum 

parameter to be used in the model. 

 

2.5.2. Random Forest based models 

 

Random Forest is a general term for ensemble methods using tree-type 

classifier {DT(x, θk), m = 1,…,}, where the θk are independent identically 

distributed random vectors and x is an input pattern. The RF classification 

algorithm is described in detail in Brieman (2001). Briefly, the RF is an 

ensemble of classification trees, where each tree contributes with a single vote 

for the assignment of the most frequent class to the input data. Different from 

DTs, which use the best predictive variables at the splits, RF uses a random 

subset of predictive variables in order to reduce the generalization error. 

In addition, the RF ensemble classifier uses a bagging or boot-strap 

aggregating, making the trees to grow from different training data subsets to 

increases the diversity of the trees. Bagging is a technique used for training data 

creation by randomly resampling the original dataset with replacement. This 

technique will ensure that each tree contains a certain proportion of the training 

dataset. On the other hand, the samples which are not present in the training 

subset are included as part of another subset called “out-of-bag” (OOB). For 

every tree of the ensemble, a different OOB subset is formed from the non-

selected elements. These OOB elements, which are not considered for the 

training of the tree, can be classified by the tree to evaluate performance of the 

ensemble. 

The RF presents many desirable properties, such as high accuracy, 

robustness against over-fitting the training data, and integrated measures of 

variable importance  
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For the RFs based models, two user-defined parameters exist: the 

number of trees used in the model (ntrees), which represents the number of trees 

to grow in the ‘forest’, and the number of variables tested in each split of the 

trees (mtry). For these two parameters, we tested a combination of three values of 

ntrees (500, 1000 and 1500) and eight values of mtry (1, 4, 8, 10, 15, 20, 30 and 

38) comprising 24 different models. As seen in the previous section, we selected 

the one of the 24 pairs of parameters which provided the highest overall 

accuracy value. 

 

2.5.3. Support Vector Machine based models 

 

The support vector machines (SVMs) are a set of related learning 

algorithms used for classification and regression that uses machine learning 

theory to maximize predictive accuracy while automatically avoiding over-fit to 

the data. Like the Decision Trees classifiers, SVMs are also non-parametric 

classifiers. Its first formulation was originally proposed by Vapnik (1979). 

Readers are encouraged to refer to Vapnik (1999), for further discussion and 

details on SVMs and Mountrakis, Im and Ogole (2011) for a review on SVMs in 

remote sensing. 

The success of the SVM depends on how well the process is trained. The 

easiest way to train the SVM is by using linearly separable classes. According to 

Osuna, Freund and Girosi (1997), if the training data with k number of samples 

is represented as {Xi, yi}, i=1,…,k where X ∈ RN is an N-dimensional space and y 



70 
 

∈ {-1, =1} is a class label, then these classes are considered linearly separable if 

there exists a vector W perpendicular to the linear hyper-plane (which 

determines the direction of the discriminating plane) and a scalar b showing the 

offset of the discriminating hyper-plane from the origin. For the two classes, i.e. 

class 1 represented as -1 class 2 represented as +1, two hyper-planes can be used 

to discriminate the data points in the respective classes. These can be expressed 

as: 

 

• WXi + b ≥ +1 for all y = +1, i.e. a member of class 1 

• WXi + b ≥ +1 for all y = -1, i.e. a member of class 2 

 

The two hyper-planes are selected not only to maximize the distance between 

the two given classes but also not to include any points between them. The 

overall goal is to find out in which class the new data points fall. In general, the 

SVMs are reported to produce results of higher accuracies compared with the 

traditional approaches, but the outcome depends on: the kernel used, choice of 

parameters for the chosen kernel, and the method used to generate SVM (Huang 

et al. 2002). 

For the SVMs based models, a Radius Basis Function (RBF) kernel was 

used. Others kernels were not taken into consideration in this study. In SVMs 

based models, there are two user defined parameters: “cost” (C) and “sigma” 

(σ). “Cost” controls the smoothness of the fitted function. It creates a soft 

margin that permits some misclassifications. Increasing the value of C increases 

the cost of misclassifying points and forces the creation of a more accurate 
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model that may not generalize well. In the other hand, increasing “sigma” affects 

the shape of the hyperplane and may also affect the overall accuracy. In our 

study, we tested several values of “cost” (C): 0.1, 0.5, 1, 1.5, 2, 4, 6, 8, 10, 30, 

60 and 120. The parameter “sigma” (σ) was estimated using the ‘sigest’ function 

implemented in ‘kernlab’ package. This function allows estimating an 

appropriate sigma value directly from the data set. Thus, C was the only 

parameter tested for the SVM models. 

 

3. Results and discussion 

 

3.1. Image segmentation results 

 

In this study a high-resolution RapidEye image was segmented at a 

single level using a scale parameter of 400. We performed the segmentation 

using eCognition Developer® version 8.0. A partial view of the segmentation 

results can be seen in Figure 2.  

It is known that a specific set of parameters may produce a good 

segmentation result when considering a homogeneous scene but this is not valid 

when a heterogeneous scene is under consideration. Since the landscape mostly 

consist of different types of environmental settings and varies in size (e.g. trees, 

rivers, forest remnants, etc.), a single-scale approach might not be appropriate as 

the features within the scene will be under-segmented (when part of the feature 

become part of another feature) or over-segmented (when the feature is 

segmented into smaller objects). Thus, it may affect the final overall accuracy of 

the classifications.  
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Figure 2. Representation of the segmentation results using a scale parameter of 400. 
Objects of forest remnants (dark red), eucalyptus (red), grassland (green), 
pasture area (light pink), water (dark blue), bareland (light blue), clouds 
(white) and shadow (black) were well delineated. 

 

However, our results suggest that, even considering a single-scale 

approach, the set of parameters used in the segmentation process was 

sufficiently adequate to delineate most of the objects within the scene and 

consequently generate relative high accuracy values for the three classifications. 

Figure 2 shows an example of delineated objects from all land cover classes 

used in this study. In general, even small objects of clouds and irregular patches 

of natural vegetation were well delineated using a single scale approach. The 

segmentation parameters were chosen according to a previous analysis in which 

27 scale+color/shape combinations were used to generate different scenarios for 

segmentation evaluation. We based our evaluation in goodness measures 

available in the literature. The results showed that a value of 400 for the scale 

parameter was the most suitable for all classes of interest. 

 

3.2. Optimized machine learning algorithms parameters 

 



73 
 

For the Decision tree based models, ‘maximum depth’ values ranging 

from 4 to 20 were tested. Based on the highest accuracy value (96.05%), the 

model with ‘maximum depth’ value of 4 was selected to be used in the final 

classification.  In studies such as Friedl and Brodley (1997) a ‘maximum depth’ 

value of 20% of the size of the tree was selected. In this approach, however, the 

overall accuracy of the model may not be the highest if we consider they did not 

tested other levels of maximum depth. In Amoro-Lopéz et al. (2011) a 

‘maximum depth’ value was estimated with a 10-fold cross validation 

procedure. In this case, the tree is pruned based on an optimal scheme that 

prunes branches offering less improvement to error cost.  

For the RF models, an overall accuracy of 97.22% was obtained with a 

mtry value of 4 and a ntree value of 500. Breiman and Cutler (2007) suggested 

the default ntree as 500 for Random Forest based classifications since values 

greater than 500 appeared to have little influence in the overall classification 

accuracy. In our analysis, the overall accuracy converged to 93.66% when we 

used 1000 and 1500 as found in Breiman (1996) who suggested that when 

increasing the number of trees the generalization error always converges. The 

same number of trees (500) was used in studies such as Lawrence and Sheley 

(2006), Gislason, Benediktsson and Sveinsson (2004), Stumpf and Kerle 2011 

and Duro, Franklin and Dublé 2012. 

For the classification using SVMs, the value of σ was estimated using 

the ‘sigest’ function and it was held constant at 0.01915945. An overall accuracy 

of 98.68% was achieved using a C value of 6. 

 

3.3. Visual inspection of the thematic maps 

 

The thematic maps produced by the three different algorithms are 

presented in the Figure 3. The major visual difference between the maps is the 
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amount of ‘pasture areas’ and ‘bareland’ depicted in the entire scene. We 

observed that both maps produced by DT and SVM algorithms (Figure 3C and 

Figure 3D) present less ‘pasture area’ than the map produced by RF, whereas the 

SVM map depicted a greater amount of ‘bareland’ areas than DT and RF maps. 

Based on our knowledge of the region, some pasture areas are severely degraded 

with portions of exposed soil, which might have caused the misclassification of 

‘pasture area’ as ‘bareland’ in the SMV map. Therefore, the predominance of 

‘bareland’ in the SVM map was also caused by the misclassification of 

‘grassland’ as ‘bareland’. In the DT map, some areas of ‘bareland’ were 

classified into ‘clouds’ due the fact that both classes are spectrally similar, which 

caused the misclassification. On the other hand, we observed that the depiction 

of ‘forest remnants’ and ‘eucalyptus’ was relatively consistent in all maps. These 

classes are similar, considering their spectral features. Although the algorithms 

differed slightly in the depiction of some vegetated areas, all the three 

algorithms depicted both classes very well. Likewise, the class ‘water’ was well 

defined in all maps, although presenting some misclassified patches in the left 

and lower portions of the DT map. 

We carried out a visual inspection of the RapidEye scene and 

considering our experience in the area, we observed the RF map, in general, 

depicted more accurately all the land-cover classes in the region (Figure 3B) 

than the other maps produced by DT and SVM algorithms. 
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Figure 3. Object-based classifications: A) RapidEye image in false color RGB532; B) 

Random Forest based classification; C) Decision Tree based classification; D) 
Support Vector Machine based Classification. 

 

3.4. Accuracy Assessment 

 

An accuracy assessment using ‘test samples’ (321) was carried out for 

each classification produced in this study to evaluate the performance of the 

models. Table 2, 3 and 4 contains the detailed confusion matrices for the RF, DT 

A B 

C D 
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and SVM based models, respectively. Overall, user’s and producer’s accuracy as 

well as Kappa coefficients were calculated.  

Based on the overall accuracies of the confusion matrices, the object-

based classification using Random forest obtained an overall accuracy of 

85.05% which was higher than 75.70% from Support Vector Machine 

classification and 71.34% from Decision Tree classification. Their Kappa 

coefficient values were 0.8312, 0.7218 and 0.6704, respectively. Since its first 

implementation in Breiman (2001), the Random Forest has been showing its 

superiority over a variety of other machine learning algorithms in remote 

sensing studies. For example, Pal (2005) compared RF based models and SVM 

based models in a pixel-based classification approach and also found an overall 

accuracy consistently over 80% for the RF classification which was higher than 

the SVM. Duro, Franklin and Dubé (2012), in a pixel-based approach, also 

found a higher overall accuracy for the Random forest based classification. 

However, the Support Vector Machine based model was slightly superior 

(1,18%) to the Random Forest in the object-based classification. 

When comparing the overall accuracy values from DT and SVM 

models, the SVM model showed a slight improvement (4.36%) over the DT 

classification. 

However, considering a visual inspection of these maps, the DT map 

showed a reasonably accurate visual depiction of the land-cover classes in this 

area. Considering its simple implementation, compared to the SVM, and even to 

RF, the DT model was effective in dealing with such variable land-cover classes.
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Table 2. Confusion matrix for the Random Forest based classification 

Reference Data 
Classification 

Data Bareland Vegetation Pasture Meadow Eucalyptus Water Clouds Shadow TOTAL 

User’s 
Accuracy 

(%) 
Bareland 31 0 1 0 0 0 4 0 36 86.11 
Vegetation 0 40 1 0 10 0 0 0 51 78.43 
Pasture área 0 0 34 0 0 0 0 0 34 100.00 
Grassland 0 1 17 59 0 0 0 0 77 76.62 
Eucalyptus 0 2 3 0 44 0 0 0 49 89.80 
Water 0 0 0 0 0 10 0 0 10 100.00 
Clouds 4 0 0 0 0 0 38 0 42 90.48 
Shadow 0 0 0 0 1 4 0 17 22 77.27 
TOTAL 35 43 56 59 55 14 42 17 321  
Producer’s 
Accuracy (%) 

88.57 93.02 60.71 100.00 80.00 71.43 90.48 100.00 
  

Overall 
Accuracy (%) 

85.05 

Kappa 
Coeficient 

0.8312 
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Table 3. Confusion matrix for the Decision Tree based classification 

Reference Data 
Classification 

Data Bareland Vegetation Pasture Meadow Eucalyptus Water Clouds Shadow TOTAL 

User’s 
Accuracy 

(%) 
Bareland 22 0 0 0 0 0 9 0 31 70.97 
Vegetation 0 40 1 0 16 0 0 0 57 70.18 
Pasture área 4 0 8 0 0 0 0 0 12 66.67 
Grassland 0 1 30 59 0 0 0 0 90 65.56 
Eucalyptus 0 2 3 0 38 0 0 0 43 88.37 
Water 0 0 0 0 0 13 0 1 14 92.86 
Clouds 9 0 14 0 0 0 33 0 56 58.93 
Shadow 0 0 0 0 1 1 0 16 18 88.89 
TOTAL 35 43 56 59 55 14 42 17 321  
Producer’s 
Accuracy (%) 

62.86 93.02 14.29 100.00 69.09 92.86 78.57 94.12   

Overall 
Accuracy (%) 

71.34 

Kappa 
Coeficient 

0.6704 



79 
 

Table 4. Confusion matrix for the Support Vector Machine based classification 

Reference Data 
Classification 

Data Bareland Vegetation Pasture Meadow Eucalyptus Water Clouds Shadow TOTAL 

User’s 
Accuracy 
(%) 

Bareland 31 0 20 6 0 1 0 1 59 52.54 
Vegetation 0 34 0 0 12 0 0 0 46 73.91 
Pasture área 0 2 20 0 2 0 0 0 24 83.33 
Grassland 0 7 16 53 2 0 0 4 82 64.63 
Eucalyptus 0 0 0 0 39 0 0 0 39 100.00 
Water 0 0 0 0 0 12 0 0 12 100.00 
Clouds 4 0 0 0 0 0 42 0 46 91.30 
Shadow 0 0 0 0 0 1 0 12 13 92.31 
TOTAL 35 43 56 59 55 14 42 17 321  
Producer’s 
Accuracy (%) 

88.57 79.07 35.71 89.83 70.91 85.71 100.00 70.59 
  

Overall 
Accuracy (%) 

75.70 

Kappa 
Coeficient 

0.7218 
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The next comparison was based on the user’s and the producer’s 

accuracies, which measure the commission and omission errors, respectively, for 

each land-cover class. The commission errors represents the probability that an 

object classified on the map actually represents that class on the ground. On the 

other hand, the omission errors refers to the probability of a reference object 

(referred as test sample in this study) being correctly classified. 

Both RF and SVM maps presented two classes with no commission 

errors: ‘Pasture areas’ and ‘Water’ for the RF map and ‘Eucalyptus’ and ‘Water’ 

for the SVM map. For land cover types with distinctive spectral features such as 

‘water’ it is common to have good values of user’s accuracy. On the other hand, 

land cover types with similar spectral features such as ‘Forest remnants’ and 

‘Eucalyptus’ also had good values for user’s accuracy (ranging from 70 to 

100%).‘Bareland’ did not have a good user’s accuracy for the SVM map 

(52.54%) and it was the lowest value for all the classes in the three 

classifications. As seen in the Figure 2, this map over-represented the class, 

probably because most of bareland pixels were actually mixed with or around 

other land cover-classes, which made it difficult to distinguish with an object-

based approach. However, RF presented a high user’s accuracy for this class 

(86.11%) and it was clearly more efficient than the others. 

In terms of producer’s accuracy, the DT and RF maps presented no 

omission error for the class Grassland (e.g. all test samples for this class were 

correctly classified), while the SVM map presented high user’s and producer’s 

accuracy for the class ‘clouds’. Comparing the three algorithms in terms of 

user’s and producer’s accuracy, it is clear that each algorithm had its strengths 

and its weakness in dealing with a specific land cover class. 
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4. Conclusions 

 

An object-based classification of RapidEye imagery using selected 

machine learning algorithms was performed. This paper investigated the 

capability of three machine learning algorithms (Random Forest, Decision Tree 

and Support Vector Machine) in conducting classifications in a vegetated area. 

In terms of visual assessments and overall accuracy, the RF based classification 

over-performed both DT and SVM classifications. Another advantage of the 

Random Forest classifier is that it requires two relative simple parameters to be 

set, whereas the SVM, for example, requires complex parameters to be set for its 

training. 

However, considering each class separately, each algorithm had a 

different performance, which may lead us to conclude that different machine 

learning algorithms might be used for the classification of different land-cover 

classes. In a future work, we intend to carry a stricter analysis of these machine 

learning algorithms in order to select the one which provides the best depiction 

for a specific land-cover class and combine their results into a new map to 

enhance the overall accuracy and its reliability. 
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APPENDIX A – R Tutorials for classification 

Decicion Trees 
Blue: Function 
Green: Example of application. 
 
#------------------## DECISION TREE ##------------- --# 
 
#------------## DATA ##------------# 
 
## CHANGE DATA DIRECTORY 
 
## LOAD RPART AND FOREIGN PACKAGES (IF INSTALLED) 
library(rpart) 
library(foreign) 
 
## CREATING DATA OBJECT 
object’sname=read.dbf(“File_name.dbf”) 
 
Ex: data=read.dbf("TRAINING_2.dbf")  
 
 
#-------## FITTING DECISION TREE MODEL ##-------# 
 
## SETTING THE FIRST PARAMETERS 
control=rpart.control(maxdepth=value,cp=value)  
 
Ex: control=rpart.control(maxdepth=30,cp=0.001)  
 
## MODEL 
object=rpart(formula~,data=data_frame_with_the_pred ict
ors, method="class"(for classification), 
control=dataframe_with_the_parameters,xval=value) 
 
Ex: dados.dt=rpart(CLASSNAME ~,data=dados[,c(2,3:40 )], 
method = "class",control=control,xval=10) 
 
## CONFUSION MATRIX 
table(groundtruth_samples,predict(decision_tree_obj ect
,type="vector"))  
 
Ex: table(dados$CLASSNAME, predict(dados.dt, type =  
"vector"))  
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##-----------------CLASSIFICATION------------------ # 
 
## CREATING DATA OBJECT 
samples_for_prediction=read.dbf("unclassified_sampl es_
file_name.dbf")  
 
Ex: predict=read.dbf("UNCLASSIFIED.dbf")  
predict.new=predict[,3:40]  
 
## PREDICTING CLASSES 
prediction_object_name=predict(decision_tree_object , 
newdata=samples_for_prediction, type="class")  
 
Ex: DT=predict(dados.dt,newdata=predict.new, 
type="class")  
 
## EXPORTING CLASSES FOR A NEW DATAFRAME 
Ex: Class <- data.frame(predict[,1],DT)  
 
## EXPORTING CLASS TO A .DBF FILE 
Ex: write.dbf(Class,file='Classes_DT.dbf') 
___________________________________________________ ___ 
 
Random Forest 
Blue: Function 
Green: Example of application. 

 
#------------------## RANDOM FOREST ##------------- --# 
 
#------------## DATA ##------------# 
 
## CHANGE DATA DIRECTORY 
 
## LOAD RANDOMFOREST AND FOREIGN PACKAGES (IF 
INSTALLED) 
library(randomForest) 
library(foreign) 
 
## CREATING DATA OBJECT 
object’s_name=read.dbf(“File_name.dbf) 
Ex: data=read.dbf("TRAINING.dbf") 
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#---------## FITTING RANDOM FOREST MODEL ##-------- # 
 
## MODEL 
Randomforest_object= randomForest(formula,data= 
data_frame_with_the_predictors,ntree=value,mtry=val ue,
importance=TRUE, na.action=na.omit) 
 
print(Randomforest_object)## for the results and 
confusion matrix 
 
Ex: RF <- randomForest(CLASSNAME ~ ., 
data=dados[,c(2,3:40)], ntree=500, mtry=8, 
importance=TRUE, na.action=na.omit) 
 
## VARIABLES IMPORTANCE 
imp <- importance(RF) 
print(imp) 
varImpPlot(RF) 
 
##-----------------CLASSIFICATION------------------ # 
 
## CREATING DATA OBJECT 
samples_for_prediction=read.dbf("unclassified_sampl es_
file_name.dbf") 
 
Ex: predict=read.dbf("UNCLASSIFIED.dbf")  
predict.new=predict[,3:40]  
 
## PREDICTING CLASSES 
prediction_object_name=predict(Randomfores_object, 
samples_for_prediction) 
 
Ex: rf.pred <- predict(dados.rf,predict.new) 
 
## EXPORTING CLASSES FOR A NEW DATAFRAME 
Ex: Class <- data.frame(predict[,1],dt.pred)  
 
## EXPORTING CLASS TO A .DBF FILE 
Ex: write.dbf(Class,file='Classes_RF.dbf') 
___________________________________________________ ___ 
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Support Vector Machine 
Blue: Function 
Green: Example of application. 
 
#-----------## SUPPORT VECTOR MACHINE##------------ --# 
 
#------------## DATA ##------------# 
 
## CHANGE DATA DIRECTORY 
 
## LOAD KERNLAB AND FOREIGN PACKAGES (IF INSTALLED)  
library(kernlab) 
library(foreign) 
 
## CREATING DATA OBJECT 
object’s_name=read.dbf(“File_name.dbf) 
 
Ex: data=read.dbf("TRAINING.dbf") 
 
#-------## FITTING DECISION TREE MODEL ##-------# 
 
## SETTING THE FIRST PARAMETERS 
 
## Optimal Sigma Value For The Kernel Function usin g 
sigest Functino 
object=sigest(formula~.,data=data_frame_with_the_pr edi
ctors) 
 
Ex: srange <- sigest(CLASSNAME~.,data=dados) 
s <- srange[2] 
rbf <- rbfdot(sigma=s) 
 
## MODEL 
SVM_Object=ksvm(formula~.,data=data_frame_with_the_ pre
dictors, type"C-bsvc", 
kernel=kernel_function,C=value,prob.model=TRUE,cros s=k
-fold_crossvalidation) 
 
Ex: SVM <- ksvm(CLASSNAME ~ ., 
data=dados[,c(2,3:40)],type="C-
bsvc",kernel=rbf,C=1,prob.model=TRUE, cross=10) 
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## CONFUSION MATRIX 
table(groundtruth_samples,predict(SVM_object,type=" res
ponse")) 
 
Ex: table(dados$CLASSNAME, predict(SVM, type = 
"response")) 
 
##-----------------CLASSIFICATION------------------ # 
 
## CREATING DATA OBJECT 
samples_for_prediction=read.dbf("unclassified_sampl es_
file_name.dbf") 
 
Ex: unclassified=read.dbf("UNCLASSIFIED_2.dbf")  
 
## PREDICTING CLASSES 
prediction_object_name=predict(SVM_object, 
samples_for_prediction)  
 
Ex: Class <- predict(SVM,unclassified[,3:40]) 
 
## EXPORTING CLASSES FOR A NEW DATAFRAME 
Class2 <- data.frame(predict[,1],Class) 
head(out,30) 
 
## EXPORTING CLASSES TO A .DBF FILE 
Ex: write.dbf(Class2,file='Classes_SVM.dbf') 
 


