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RESUMO

Este trabalho tem como objetivo principal investigderentes abordagens de
segmentacdo e classificacdo de imagens de sensat@memoto para o
mapeamento de areas vegetadas no estado de Minais. G&omo ponto de
partida, este trabalho foca no desenvolvimento @ abordagem geral de
selecdo e avaliagdo da segmentacdo de imagendadessdlucdo utilizando
amostras de objetos reais, 0s quais sdo refermos objetos-referencia. Uma
série de medidas foi aplicada para a avaliagdouddidade da segmentacéo
produzida por diferentes combinacfes de paramefrosliferentes classes de
cobertura do solo. Estas medidas foram utilizadaa gerar diferentes valores
de ranking onde a combinacdo de parametros queeobtenaior ranking foi
selecionada com a combinacgéo ideal de parametrasapsegmentacdo de uma
determinada classe. Os resultados dessa abordagstraram que cada classe
apresentou um parametro diferente de segmentac8oge aeforca que uma
abordagem de escala Unica pode nédo ser adequadeepegsentar toda a area
de estudo. Uma vez selecionado a melhor segment@réduzida pelos
parametros selecionados), foi aplicada uma abondatgeclassificacdo baseada
em diferentes classificadoreSupport Vector MachineArvores de Decis&o e
Random ForestO objetivo desta abordagem foi verificar o desemhp destes
classificadores combinados a abordagem baseadajetosoem gerar mapas da
cobertura do solo. Baseando-se nos resultadosnaigacacdo visual e de valores
de exatiddo, o mapa produzido p8landom Forestetratou mais precisamente
todas as classes de cobertura do solo do que s ongpas produzidos pelo
classificador Arvore de Decisddapport Vector Machine

Palavras-chave: Medidas de qualidade, objetosémedé, classes de cobertura
do solo, algoritmos de aprendizagem.



ABSTRACT

This study aims to investigate different segmeatatiand classification
approaches using remote sensing imagery for mapypeggtated areas in the
state of Minas Gerais. As a starting point, thiseerch focuses on developing a
general approach for selecting and evaluating tegmentation of high-
resolution images using samples of real objectsiclwlare referred to as
reference objects. Several goodness measures heere applied for the
assessment of the quality of the segmentation pemtluby different
combinations of parameters for different land-covetasses. These
measurements were used to generate different ankalues where the
combination of parameters that achieved the higteediing was selected as the
ideal combination of parameters for the segmematib a given class. The
results of this approach showed that each classldiflerent parameter as the
best parameter, which reinforces that a singleesegdproach may not be
adequate to represent the entire study area. &heeted the best segmentation
(produced by selected parameters), we applied ssifitation approach based
on different classifiers: Support Vector Machinegcision Trees and Random
Forest. The goal of this approach was to verify pgeeformance of these
classifiers combined with object-based approaahetterate maps of land-cover
classes. Based on the results of visual compadseohnvalues of accuracy, the
map produced by the Random Forest depicted mongratety all land-cover
classes than the other maps produced by Decisiea Tlassifier and Support
Vector Machine.

Key-words: Goodness measures, reference objectd;claver class, machine
learning algorithms.
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CHAPTER 1 - GENERAL INTRODUCTION

1 STRUCTURE OF THE DISSERTATION

This dissertation has been structured in two a&dichccording to the
new available format from the Graduate Program mreft Engineering
formatting guidelines. The two articles were pregaraccording to the
guidelines of thénternational Journal of Remote Sensing

The content of each chapter is briefly summarizetbbows:

Chapter 2 - Scale parameter selection for remote Being image
segmentation based on reference objectBhis chapter focuses on the proposal
of a procedure based on segmentation goodness magdeu selecting optimal
segmentation parameter values for remote sensirggdanmsegmentation. A
supervised method based on manually delineatedctobj@s used. The
methodological steps on selecting the referencectdhjthe goodness measures
utilized and our selection procedure based on Gl8gare are presented. A
single-class and a multi-class approach were ag@liysorder to verify whether

is preferable a single or a multi-scale to repregenentire scene.

Chapter 3 - Object-based classification with seleetdt machine learning
algorithms for the classification of vegetated area using high-resolution
RapidEye imagery.In this chapter, the study focuses in an objecettasage
analysis approach for classifying land-cover classeer a vegetated landscape
using three supervised machine learning algorithFs. the segmentation
process, the optimal multi-class parameter val@®44- Chapter 2) was used.

The methodological steps on selecting the objeatufes, tuning the machine
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learning algorithms parameters as well as the folatsification maps are

presented.
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2 INTRODUCTION

In recent years, there has been an increasingesitén providing
integration tools in the area of remote sensingfdoest management. As it is
already known, vegetation is a critical compondrnapndscape and serves as an
indicator of the overall ecosystem condition, eonimental stress and landscape
change at local, regional and global scales Howetrer perception of the
difficulties in monitoring the earth's surface agional and global scales led to
the development of new operational solutions andncomitantly, the
development of new sensors.

Studies possible only by the use of airborne sensan now be easily
implemented with data from remote sensing withableent of satellite sensors
with high and very high spatial resolution. Amohe tvarious sensors available
today, the RapidEye (which is the focus of thiseesh), which produce images
with 5 m spatial resolution, has proven suitable dtudies in the context of
vegetation since the satellites were designed taudmx mainly to monitor
agricultural and environmental resources (RAPIDEZ®&L1).

Hence, with the development of more advanced ssnsioe level of
detail within the images has increased consideyalilywing smaller features to
be mapped on the Earth’s surface. However, newertgds have emerged when
processing these images, resulting in a poor pegnce of traditional pixel-
based approaches. The main challenges are relatédetincreased spatial
heterogeneity and the reduced size of objectstrabe detected. Consequently,
concerns regarding the accuracy and fidelity of theived products also
increased.

In the last decade, a new approach has been estfnssed to address
these challenges: GEOBIA — Geographic Object-Batedge Analysis.
According to GEOBIA, the basic unit of processisgno longer the pixel, but
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objects composed of several pixels. There are akwamivantages in the
application of a classification based on an objeted approach instead of
pixel-based approach. Image objects, besides thetrap information, contain
additional attributes (e.g. shape, texture, retaticand contextual information)
that can be used for classification purposes (BAATRCHAPE, 2000;
BLASCHKE; STROBL, 2001). Moreover, segmentationdarces homogeneous
image objects, avoiding the induced salt-and-peppffect (MEINEL,;
NEUBERT; REDER, 2001).

This new approach implied the prior segmentatiorsaitllite images,
which means grouping spectrally similar pixels isiragle object according to a
stop-threshold called ‘scale parameter. Howevehge tquality of the
segmentation is closely related to the scale pamrmesed. Until now, no
general approach for selecting this threshold gxist

There have been several significant advances irgeénsgegmentation
process in the past few years. However, compard¢det@segmentation process
itself, relatively little attention has been givdn the evaluation of the
segmentation results as well as to the developroklt general approach to
avoid the subjectivity in selecting a scale parameSince the quality of
segmentation is closely related to the scale pasnused in the segmentation
process, one of the major obstacles of object-bapgioach is to define an
appropriate scale parameter for a specific typenmge and object under
investigation. The selection of the scale paramistemostly, based in the user
experience or in a visual assessment of the imgih cases are based human
perception which is very difficult, time-consumingpbjective and the results
may vary according to the user. In addition, thelgation of the segmentation
results is not yet a standard practice when coiayein object-based approach

classification. In many cases, evaluation of sedatiEm is performed only
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visually and taking into consideration the classpbenomenon under study
which is also subjective.

Hence, one of the motivations in conducting th&eegch is to avoid this
undesired subjectivity by developing a general apph to evaluate and
compare the results of segmentations performed éyeral parameter
combinations and, based on the results, to seleet test segmentation
parameter.

The very next step in this process — which is #@onext step of this
research — is to conduct the classification basethe objects produced by the
segmentation process. A classification is needed oy for a better
understanding of the structure and compositionhef tesources and features
under investigation, but also for the pattern redtign and for mapping areas in
the earth’s surface which presents the same meamitig digital images. It is
also known that a poor segmentation can strondéctathe overall accuracy of
the classification. It is essential, however, to dide to determine whether
inaccuracy in the classification process is dueatpoor classifier or a poor
segmentation, or even both. Thus, the first stefn®fanalysis must be to avoid
the influence of a poor segmentation in the overeduracy by choosing the best
set of parameters to produce good segmentatiofigesu

In this context, a number of studies have beemtgsifferent classifiers
in order to verify their influence in the final aadl accuracy. Over the last
years, machine learning algorithms have shown gretgntial to deal with a
high number of predictors from the object-based-agqgh as well as to improve
the accuracy and reliability of remote sensing ienatassification. Machine
learning algorithms have been intensively useddassification purposes in
remote sensing showing improvements in classificagiccuracy.

For this reason, the second part of this researchses in evaluating

their robustness in conducting classifications nasea with wide variety of
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environmental settings due the different land-coslesses in order to obtain
good classification results and, consequently,abddi information about the

entire area.
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3 Research objectives

In order to help bridge the current research gap eRists, this dissertation has

the following objectives:

 To develop a procedure based on segmentation geedmeasures and
reference objects for selecting the appropriate ganasegmentation
parameter values from a set of potential combinatiproduced by the
Multi-Resolution Segmentation (MRS);

« To assess the performance of different goodnessuresin choosing an
“optimal” from a large set of candidate segmentetiproduced by a set of
different parameter values;

« After the selection of the optimal segmentatiorapaeter value, to examine
the object-based approach in conducting clasdifieatof a vegetated area
in RapidEye data with a selection of machine lemyralgorithms such as
Decision Trees, Random Forest and Support VectahiMas.

* To produce a step-by-step tutorial on how to ussdhmachine learning

algorithms in the R environment for future studies.
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4 BACKGROUND

This section aims to provide the required theocaétifindaments for this
research.

4.1 Remote Sensing

According to many definitions of the term ‘RemotenSing’ found in
literature (MORAES, 2002; LILLESAND; KIEFER, 200RICHARD; JYA,
2006; DE JONG; MEER, 2004; SCHOWENGERDT, 2007) @alrdefinition
can be stated as:

The science and art of obtaining information
about an object, area or phenomenon in the Earth’s
surface through the detection, acquisition and gsial
(the information interpretation and extraction) tfe
electromagnetic energy emitted or reflected by
terrestrial objects and recorded by a device tlehot
in direct contact with the object, area, or phenoome
under investigation.

Remote sensing, also calleBarth Observatioh refers in a general
sense to the instrumentation, techniques and metheed to observe, or sense,
the surface of the earth, usually by the formatdéran image in a position,
stationary or mobile, at a certain distance renfiam that surface (BUITEN;
CLEVERS, 1994).

Concerning the mentioned concept, remote sensirgparehers,
technology producers, ecologists, forest and laadagers agree in the potential
role of remote sensing as an information resouscgupport sustainable forest

management. This potential is based largely onutligue characteristics that
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remote sensing data provides: synoptic, repetitiygantitative, and spatial
explicit capabilities (FRANKLING, 2001).

4.1.1 Electromagnetic Spectrum

The electromagnetic spectrum is a set of waveslecfremagnetic
radiation that differ by the value of their freqogrand length. These waves are
then classified into distinct regions (Figure 1hisTradiation - which is defined
according to Moraes (2002) as a form of energy lipimpagates without the
need of a media, as waves or electromagnetic [gtids used in obtaining data
from remote sensing and it is represented contislyan terms of wavelength,
frequency or energy (MORAES, 2002; ROSENDO, 2005).

ELECTROMAGNETIC SPECTRUM

Wavelength
[Freetres)
Radio Microwave Infrared Visible Ultraviolet X-Ray Gamma Ray
1 1 1 1 1 1 [l
1 T I 1 I L] L] ,
103 1002 oS 106 18 110 1012
Frequency

(Hzd

##

1012 l 1015 1016 1018 1020

Red Violat

Figure 1 The Electromagnetic Spectrum
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The segments of the electromagnetic spectrum ugedrbote sensing
are the visible and infrared spectrum (ROSENDO 520The visible spectrum
is the region of the spectrum which is perceivedhs human eye and covers
colors from violet to red. The infrared is dividedo three: near-infrared (0.7 to
1.3 uM), mid-infrared (1.3 to 6.um) and thermal infrared (6.0 to 10QMA)
(Table 1). The ranges that include the set of feegies or length waves of the

electromagnetic spectrum are calfgbctral bands

Tabel 1 Regions of the electromagnetic spectrumtlagid wavelength ranges

Regions Wavelength
Gamma Ray < 0,003 - 0,4m
X Ray 0,03-3,0nm
Ultraviolet 0,003 - 0,4m
Blue 0,45 - 0,56m
Visible Green 0,50 — 0,54m
Red 0,65 -0,72m
Near Infrared 0,72 -1,3um
Mid Infrared 1,3-4,um
Far Infrared 4,0 — 30Qum
Microwaves 1,0-100cm
Radio > 100 cm

The sun and the Earth are the two main natural cesurof
electromagnetic energy used in remote sensing md kurface (MORAES,
2002). Regardless of its source, all the radigtiasses through the atmosphere.
However, the length traveled through the atmospheasers can vary widely.
Thus, the effect of the atmosphere in the sensiag wary depending on the
variations in length traveled by the radiation, #tmospheric conditions in the
moment and of the wavelengths involved in the pecéLILLESAND;
KIEFER, 2000).

The solar radiation that focus on earth’s surfacéni parts, scattered or
reflected by particles in the atmosphere. Parhefradiation that hits the target

is reflected or emitted. The phenomenon relatetthé¢oportion of energy which
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is reflected is calledReflectancep) and it is important to remote sensing since
the orbital sensors registers the reflectance fiteenobjects in Earth’s surface.
Each object in Earth’s surface which emits or @flgadiation has a spectral fit
for each wavelength of the electromagnetic spectrum

4.2 RapidEye

Known as RapidEye, the multispectral satellite talfetion was designed
by MacDonald Dettwiler and Associates (MDA) of Riebnd, Canada and
launched into space on August 29, 2008 (RAPIDEYHE,12. The system is run
by a private provider of geospatial information asgavices known as German
RapidEye AG (BECKETT; ROBERTSON; STEYN, 2010).

The system consists of five identical satellite 1&g equally spaced
around the orbit (TCY et al., 2005). The satelligerate in an orbit at 630 km
altitude, each with a pubshbroom sensor, five pdictral bands and spatial
resolution of 6.5 meters. The system is able tessany point on the surface of
the Earth daily between latitudes -84° to +84° (RHXPYE, 2011; BECKETT;
ROBERTSON; STEYN, 2010).

The RapidEye products are available in two proogskvels: 1B and 3A.
The products that receive a Level 1B radiometricemiion have a correction of
the sensor, and receive data from the satellitei@dt; On the other hand, 3A
products receive radiometric, geometric and semsorection (RAPIDEYE,
2011). Also, the RapidEye images have the Red Huged (690-730 nm),
specific for monitoring the photosynthetic activifthe vegetation. Conducting
a study to evaluate the contribution of RedEdgedkiarand use classification,
Schuster, Forster and Kleinschmit (2012) calcul2#dpectral indices in which
the Red Edge band was incorporated. Among the ésdiested, was the NDVI
(Normalized Difference Vegetation Index) with adsfins for the Red Edge.
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The authors used the machine learning algorithnth sas Support Vector
Machine and Maximum Likelihood to conduct the cifisgtions and as a result,
found that for both, there was a slight improvementhe overall accuracy of
the classification when they introduced the band Reége and indexes as inputs
for classification.

4.3 Image segmentation and object-based image classiton

The availability of high spatial resolution imagedbtained from
satellites and airborne sensors has increasedaéntrgears. However, traditional
methods for classification based on pixels are suitable for these types of
images. For Yu et al. (2006) this is due to the that a single pixel usually
represents only a small part of the target objéassification in images with
high spatial resolution. When the classificationd@ne, the high degrees of
spectral variability found in classes, such as shadcaused by differences in
the canopy, etc. reduce the separability betweassek, resulting in low
classification accuracy. Moreover, the unsatisfagctesults of this approach can
be attributed to the fact that contextual and gedmmformation of the image
are highly neglected.

An alternative approach to the traditional pixesdséh approach is the
object-oriented approach (HAY; CASTILLA, 2008). Thmsic idea of this
process is the grouping adjacent pixels into objepectrally homogenous and
thereby lead to the classification of the objedsbaing the minimum unit of
image processing (YU et al.,, 2006). Using theseeaibj as basic units of
analysis has many benefits, such as reducing sp&etiability within the class
and the ability to include spatial and contextudbimation such as size, shape,
texture and topological relations (BENZ et al., 200The objects are created

through the segmentation and it can be defineth@ptocess of partitioning an
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image into non-overlapping regions. This procesguires previous image
segmentation for object delineation through a stiogeshold called ‘scale
parameter’. However, no general approach for satpthis parameter exists.

The classification is the very next step in thipra@ach. Several studies
have been studies testing different classifiershsas machine learning
algorithms in order to verify their influence inetfiinal overall accuracy. These
new classifiers have shown great potential in cotidg classifications and
improve the accuracy of the final classification UANG; DAVIS;
TOWNSHEND, 2002; PAL, 2005; HAM et al, 2005; GISBON;
BENEDIKTSSON; SVEINSSON, 2006; LALIBERTE et al., @&
LAWRENCE; WOOD; SHELEY, 2006; YAN et al. 2006; CHAN
PAELINCKX, 2008; PLATT; RAPOZA, 2008; WATTS et aR009; OTUKEI;
BLASCHKE, 2010; STUMPF; KERLE, 2011; MYINT et al2011; DURO;
FRANKLIN; DUBE, 2012).
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Abstract: This paper presents a procedure based on measusegmentation
goodness and on reference objects for selectingoppate segmentation
parameter values from a set of potential combinatiéor this study, we used a
5m spatial resolution RapidEye image. A set of &@nence objects and 15 test
objects were manually delineated. For evaluatirggremtation results, we used
quality measures designed to compare the resultobjdct-based image
segmentation with sets of training objects extidtem the image of interest.
These quality measures are mostly related to cegmentation and under-
segmentation problems. We computed a score for sagmentation parameter
according to the value obtained in each measures. résults show that the
measures have different performance in terms ofideetification of which
parameter combination is better. However, basetth@wisual assessment of the
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test objects, the proposed procedure showed toffléemst in identifying a
suitable scale parameter value for each class.ré&balts also reinforced the
statement that a single-scale approach is not atledpr representing all classes
as some of them may be under or over-segmented asimgle scale parameter.
Keywords: parameters selection, quality measures

1. Introduction

Classification of remotely sensed images for map@nd monitoring
land cover had fundamental importance in recenadkes, in particular, due to
the development of new techniques and computerranaog that enhanced the
analysis and manipulation of increasingly availahbiiigital data. The
classification process can be divided into two gaingpproaches: i) pixel-based,
and ii) object-based. The former has been traditipnused since the early
stages of remote sensing image processing, wteldattter has become more
common in recent years (Blaschke 2010), after Hadlability of higher spatial
resolution imagery.

Also according to Blaschke (2010), there is a cosgg in the field of
remote sensing that some of the unsatisfactoryitsesu classification of high
spatial resolution images using pixel-based metlvadsbe attributed to the fact
that both geometrical and contextual informatiomtamed in the images are
ignored. To address these issues, object-basegisanalas become a concept
widely used in geoscience studies to explore themgéric and contextual
information from image data.

Object-based methods require previous image segimmtfor object
delineation. Therefore, many segmentation algosthmave been developed
aiming at the extraction of meaningful image olgeth most algorithms, users
need to set one or more parameters that affec@wbmge size and the number
of objects generated during segmentation. Howeparameter selection is
uncertain. A specific set of parameters may progugeod segmentation result
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when considering a homogeneous scene but this tsvatid when a
heterogeneous scene is under consideration. Sieckandscape mostly consist
of different types of environmental settings andesin size (e.g. trees, rivers,
forest remnants, etc.), a single-scale approachtmigt be appropriate as some
features within the scene will be under-segmentelde part of the feature
become part of another feature) or over-segmenwdter( the feature is
segmented into smaller objects).

Since the effectiveness of the object-based apprzadirectly affected
by the segmentation quality, studies that deal wetlaluation of image
segmentation have become an emergent topic in eeseoising.

Zhang (1996) categorized the evaluation methods thtee types:
analytical, empirical goodness and empirical disarey methods. The
analytical methods evaluate the segmentation dlgoritself, considering its
principles, requirements, utilities and complexigtc., and the information
provided by these methods are qualitative. Howeirergertain cases, these
methods can provide quantitative information abiwet algorithms. Empirical
quality methods as well as the analytical methods @lso referred to as
unsupervised methods evaluation. These methods evaluate the perfocmaf
algorithms through quality measures such as, famgte, statistical measures of
pixels and the shape of objects, without the nemdaf reference or prior
knowledge of the segmentation considered correat.tld® other hand, the
empirical discrepancy methods involve comparing tiple image
segmentations with a manually delineated image ctbjso referred to as
references, thus classifiedagervised methods

There are some studies that have used unsuperwisgtiods of
evaluation (Espindola et al. 2006; Chabrier et24l06; Kim, Madden and

Warner, 2008). A detailed description of unsupe&wimethods can be found in
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Zhang, Fritts and Goldman (2008). However, accgrdim Zhang, Xiao and
Feng (2012) the supervised methods are the modt use

Several studies have applied supervised methodg dsfferent quality
measures. Some of them have used indices susheasFit Index(Lucieer and
Stein 2002),Spatial Overlap IndeXZou et al. 2004) and th@uality Rate
(Weidner 2008) for quantifying the goodness of skgmentation. Others have
tried to use measures based on shape suaheasndperimeter(Neubert and
Meinel 2003),circularity (Yang et al. 1995) andhape index(Neubert and
Meinel 2003) unlike Cardoso and Corte-Real (200%ng et al. (2006) and
Gavet and Pinoli (2011) which have used distanecetfans on the evaluation
procedures. On the other hand, Clinton et al. (R0i#s used combined
measures whereas Ramon et al. (2001) has presehtdatid measure based on
empirical goodness and empirical discrepancy method

Despite many studies that assess the quality afeébgmentation process,
there are few that provide subsidies for chooshwey dptimal scale parameter
based on the evaluation of quality measures. Tthesyurpose of this study is to
present a parameter selection procedure based asums of segmentation
goodness for selecting the appropriate scale paeanvalue from a set of
potential combinations.

2. Methods

2.1. Data and study area

A high spatial resolution RapidEye image from tlethern region of
Minas Gerais, Brazil, was used (Figure 1). RapidiEgagery presents 5,0 m
spatial resolution with five channels: blue (0,40,51um), green (0,52 — 0,59
um), red (0,6, — 0,6@m), red edge (0,69 — 0,18n) and near infra-red (0,76 —
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0,85um) and a radiometric resolution of 12 bit. Thisadaet was acquired at
standard processing level (orthorectified) by MiGzerais state government in
June, 2010.

15%0°0"S

20°0°0"S

50°0°0"W

Figure 1. Study area located in Minas Gerais. Brazi

This image has an area of 77 x 77 km over the rnpalites of S&o
Vicente de Minas, Minduri, Cruzilia, Luminarias a@drrancas. The area is part
of the Rio Grande basin, called Campo das Verteftes main types of native
vegetation are savannah, seasonal forest, rodklydiel gallery forest. The area
is located within the transition between two mapmazilian Biomes. The
Atlantic Rainforest is one of the most importanbfes in the country and
originally covered about 1 million square kilomatewithin 17 states,
representing 16% of the country area (Galindo-Laal Cémara 2003).
However, forested areas within this Biome have bdeaoreasing since the
colonial period due to agricultural cycles and be expansion of cultivated
fields. Nowadays, forests cover approximately 986Q0are kilometers (8% of

the original cover) and are still under strong asplgenic pressure. The land-
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cover in the study area basically includes remnahtsative grassland, rocky
fields, savannah and forest, as well as open watsture, eucalyptus, and

crops.

2.2. Image segmentation

Image segmentation represents the first step irecbbjased image
analysis. Many segmentation algorithms have beerldeed in recent years
and all of them aim at deriving homogeneous imaggments. The multi-
resolution image segmentation (MRS) implemented@ognition Developer®
software is a frequently used algorithm in Eartiersces (Blaschke 2010). The
MRS algorithm uses a “bottom-up” region neighboratgects based on a set of
user-defined parameters such as scale, color/saagesmoothness/compactness
defining a “stopping threshold”. Additional infortian regarding the
segmentation algorithm can be found in Benz g2804).

For this study, image segmentation was performedgu8 different
scale parameters values ranging from 100 to 1000, (150, 200, 250, 300, 400,
500, 750 and 1000) using the MRS. Thus, the setatien and further
evaluation measures could be analysed at varioatesscFor each scale
parameter, a set of three combinations of colopshaalues was used,
comprising 27 scale+color/shape combinations. Tmeathness/compactness
value were held constant (0.5). The values of ¢sthape used were 0.1, 0.3 and
0.5 thereafter mentioned as A, B and C, respegtivell of the segmented
images were then exported as polygon shape fitefsifther analysis in ArcGIS
9.8
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2.3. Measures of segmentation goodness

2.3.1Reference digitization

According to the available literature, there ardaege number of
segmentation evaluation methods. We focused phatiguon the supervised
methods in which a set of manually delineated dbjedll be used as reference
to compare to the segmentation results.

All reference objects used in this study were getymented since their
boundaries are very sharp. Therefore, we reliedwrpast experience with the
study area as well as conducting object-basedifitagi®mns in these land-cover
classes to guide the selection of reference ohjects

In this study, 20 reference objects from five lauder classes -
Bareland, Eucalyptus, Grassland, Forest remnamtsPanture - were manually
delineated using ENVI 4.8 (Figure 2). For eachlage carefully selected the

objects varying in shape, size and location.
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Figure 2. Representation of the 20 manually detataeference objects from the five
different land-cover classes. From the top left:rdiend, Eucalyptus,
Grassland, Forest remnants and Pasture marked,itigit blue, green, white
and blue respectively.
For the purpose of comparison, we also delineatédoljects —
thereafter referred as ‘test objects’ — in ordevedfy the segmentation results
produced by the optimal scale parameter value ptedeby the proposed

procedure based on the reference objects (Figure 3)
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Figure 3. Representation of the 15 manually detetbaest objects from the five
different land-cover classes. From the top left:rdband, Eucalyptus,
Grassland, Forest remnants and Pasture markedlawysvhite, light blue,
black and maroon, respectively.

2.3.2Segmentation Evaluation Criteria

Since under-segmentation and over-segmentationmgrertant issues
for GEOBIA, the criteria for segmentation evaluatiosed in this study are
mainly based on goodness measures, which give ditation of under-
segmentation and over-segmentation.

We computed various goodness measures for eachimatioh of
segmentation parameters and different referenceecbbgets (Bareland,
Eucalyptus, Grassland, Forest remnants and Pasture)

For the purposes of describing the goodness mesaggesl in this study,
let us consideK = {x;: i = 1...n} as the set oh training objects, where = 20;
andY = {y;: j = 1...m} as the set oim objects from the results of different
segmentations (Figure 4a).
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A B

Figure 4. Schematic representation of the objatashed gray line) overlapping the
reference object (solid black line). (A) Teset indicating all the objects
overlapping the reference object, including tho#th wiore than 25% of extra
pixels (in light gray) (1 and 2). and; (B) tNgsubset indicating the relevant
objects within the reference and the lost areask (giay) due the exclusion of
the objects 1 and 2.

Therefore, let us consider the Elementary Set Thedor describe

areaxNy;) as the area of intersection of the training dbyewith the objectsy;

and area(xUy;) as the union of the area from the training objeawith the

objectsy;. In this study, our evaluation was performed oinlythe objectsy,

which are relevant to the training objegtaccording to the following rule:
o Ya=y;areax Ny)/areqy;) > 0,75
This rule will ensure thaY, will contain only objects with more than

75% of its area within the reference object. Ineottvords, objects with more

than 25% of extra pixels may not properly repregbatreference. This is an
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indication of under-segmentation, which is not deki The exclusion of these
objects causes a loss of area, which is also aaaitimh of under-segmentation
(Figure 4b).

Moller et al. (2007) proposed tielative AregRA) metric:

_area(xn 3{)

Ly ay 1
area( y,) 4 @)

According to Moller et al. (2007)RA € [0,1] with 1 being an ideal

segmentation.
Weidner (2008) proposed the Quality Rape) index:

1 area(xn y)

R= Ly
Q area(xO y)

0y )

Where,QR € [0,1] with 0 being an ideal segmentation.

Clinton et al. (2010) evaluated a modification o RA metrics and both

metrics were combined via Root Mean Square:
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_area(xn ) |
Oversegmentationl-—————~, ¥J , (3)
area( x)
are
Undersegmentationl—M, N (4)
area( y;)

RMS= \/Oversegmentatl(fn*r Undersegmentatic )

2
Both metrics are within the interval [0,1], withb@ing ideal. According
to the authors, these modifications were made topewe with the originaRA
measure and to evaluate the measures over theamelebjects for each
reference. These modifications are suitable fog #tidy as we are evaluating
the measures over thg subset.
Marpu et al. (2010) proposed a simple way to amaksgmentation
results based on five different criteria:
« Percentage of the area of the biggest overlapgijecbafter excluding
the extra area;
« Percentage of lost area;
» Percentage of extra area;
» Number of reference objects that lost more than 26%s area, and;
* Number of reference objects that gained more t5&h @f its area.
For this study, we evaluated each of these fiveeriai as separated
indices:
area( X N Y )

%BigObj =
area( )

Yimax Y (6)
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area( x) — ared xn Y)
area( x)

%LstArea= ,yuy @)

area( y;) — ared xn y)
area( x) ’

%EXxtArea=

yuy (8)

%BigObj %LstArea and %ExtArea are in [0,1], wheré%BigObj =
100% defines a good segmentation, where the biggdstobject match the
reference object exactly, arfbl_stAreaand%ExtAreawith 0% being ideal.

For the third and fourth criteria, we simply comgulitthe number of
reference objects which had values greater thanf8s%e measures described
in Eq. (7) and (8). These criteria were used geralty factor for the global
score (described in the following section). Thistéa was calculated using the

formula:

1
f.:N.* 9
P i —10 9

Where pf; is the penalty factor for the scale paramgtandN; is the
number of objects that gained or lost more than 28%s area in the scale
parametey.

We decided to combine the third and fourth critémta a penalty factor
(pf) since the reference objects that gained or 168t 2re strongly deformed
and this scale parameter might not be suitablé&éatevely represent the objects
from that land cover class.

With the exception of th®elative Areawhich was evaluated on the
subset, all the goodness measures used in thig steik evaluated on thé,

subset.
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2.3.3. Metrics similarity

In this work, a correlation coefficient was used tepresent the
relationship between the goodness measures. ThiBothesimply examined
when there is a tendency for two measures to iserea decrease together,
called positive correlation, or, for one to increas the other decreases and vice
versa, called negative correlation. The Pearsorreledion coefficient is
conventionally defined between -1 and +1, whereegresents strong evidence
of negative correlation and; 1 represents strongesee of positive correlation.
Values near 0 tend to occur when there is littla@mcorrelation between the two
variables.

The Pearson rank correlation coefficient (r) cacddeulated as follows:

_ 1., Xi— X y—?
r_n—l .Z:;‘[ S j[ S j 4o

Wherer is the Pearson rank correlation coefficient comdid) thea

value of 0.05;)n is the sample size is the value for the variable X is the
mean value for the variable S, is the standard deviation for the variakle; is
the value for the variablg Y is the mean value for the varialylend;S, is the
standard deviation for the varialjle

In this context, ar value were calculated for each possible pair of
goodness measures used in this study in orderrify Vethese measures are
correlated. Two measures with strong correlatiolmes mean that just one of

them can be used to effectively evaluate the setatien.
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2.3.4. ldentifying the optimal image segmentation scale

To evaluate the segmentation generated at each deatribed in the
Section 2.2, a score for each measure describéldeiprevious section were
calculated. The scores were based on a single-alga®ach and on a multi-
class approach. In the first case, we quantifiedghality based on the mean
values for the measures considering each classaselya In the second case, the
multi-class approach used the mean value for thesures from all the reference
objects.

The optimal image segmentation scale relative ¢osihgle and multi-
class approach was defined as the scale that, eftesidering each score,
maximized the final global score.

For the purpose of describing the score and glsbade we used, shall
us consideK = {k: i = 1...n}, as the set oh goodness measures used in this

study. The score ranged from 0 to 10. Thus, eacsune had a coefficiera)

_ max(k )— min{ )
a= 10 kOK (11)

Where, max{) is the maximum value of themeasure among the 27
scale parameter combinations, and; #gn{s the minimum value. The
coefficienta represents the value that each measure must secoealecrease in
their values to get one point from the score. Kangple, a goodness measkre
has 0 as the ideal value. In this case, its minimalhaemin(k) gets the highest
score (10.0). The next score (9.0) will be giverth® mink) + a value. Then,
the next point (8.0) will be given to thmin(k) + 2*a, and so forth. The same
approach was used to the measures that have & &etl value. This method
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will ensure that each goodness measure will hameénanum and a maximum
score taking into consideration the distributiod amplitude of its values.

The global score can be calculated as follows:

Gs:i s—( pf*i s} (12)

Where GS is the global score for scale paramgtef§ is the score for the
measure, andpf;is the penalty factor for the scale paramgter

As most goodness measures give an indication oéresEgmentation
and over-segmentation, thérvalue is equally weighted. TH&BigODbj is the
only measure with double-weight&value (with the highest score as 20). This
measure represents how much the segmentation reatthaeference object.
This measure must be taken under consideratiore sthe higher values
represent a perfect segmentation, which is deskestricter evaluation can be
carried out by changing the weights of the measire®rify their influence on
the global score.

2.3.5. Visual inspection of the segmentation results

After selecting an optimal image segmentation seallie for each
class, the image objects produced by these pareswetee compared to the test
objects (shown in Figure 3). The quality of thersegtation depends not only
on the reference objects, but how well these tdgects are represented;
otherwise we can assume that the potential segtrmmframeter value is only
suitable for these specifics reference objectsmaag not be correctly judged as

the best parameter to represent a specific laneradass.
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For the evaluation, we based on a qualitative Visspection of the test
objects. We intended, primarily, to identify undmgmented test objects. As
mentioned, over-segmented features are more lthelbe rebuilt than an under-
segmented feature. Thus, an under-segmented féeatuoédesired as it may not
represent the real object and it can strongly &ffiee overall accuracy of the

classification.

3. Results and discussion

3.1. Optimal image segmentation scale

The Global Score@S values for the selected classes as well as the
individual goodness values for each land coverscias summarized in Table 1.
In this analysis, we focused on selecting the goatameter (among the 27 used
in this study) which produced the highesS according to each goodness
measures.

Comparison ofGS values for the single-class approach and for the
multi-class approach showed the segmentation el@huprocess yielded a%$s
ranging from 50 to 59. A brief analysis of Tabletows that each land cover
class obtained a different scale parameter: 300A Bareland, 750A for
Eucalyptus, 400C for Grassland, 150B for Forestnaams, 100C for Pasture
and 400A when considering all reference objectsttugy. This result confirms
the fact of a single-scale approach may not beogpiaite to represent the entire
scene. For example, we found the combination 75@& the most suitable
parameter to represent the cldsscalyptus However, if we consider this
parameter in a single-scale segmentation, all theralasses will be strongly
under-segmented. Liu and Xia (2010) found that sifiggtion accuracy

decreased substantially when over or under-segmtamtaccurred. In fact, this



46

issue is more evident in under-segmentation becander-segmented objects
contain more than one land cover class. On ther dthed, if we consider the
100C, which is the most suitable parameterHasture some classes will be
over-segmented.

A stricter evaluation of Table 1 shows that nonetlnd goodness
measure used in this study had the highest scoreslfthe selected land cover
classes. This is evident when considering the mmeagBigObj Despite the
lower values - and consequently lower scores VagetatiorandPasture these
classes showed the high&$values. In fact, this is due the non-participatién

pf on theirGSvalues, making them the high&s

Table 1. Selected optimal segmentation parameguey according to its highest global
score values.

Bareland EucalyptusGrassland Vegetation Pasture CIA”
asses
QR 0.03257 0.00215 0.01985 0.03533 0.0191605758
Score 7 10 8 8 9 0
RA 0.22700 0.20785 0.20316 0.29545 0.537@720073
Score 5 2 4 6 10 3
OverSeg  0.02364 0.11847 0.02978 0.06821 0.0754002712
Score 4 0 8 9 3 8
UnderSeg 0.03257 0.00215 0.02620 0.03533 0.0191605758
Score 7 10 5 8 9 10
RMS 0.03259 0.08381 0.02847 0.06479 0.055%B07339
Score 9 0 8 8 8 4
% Big Obj 59.92% 84.41% 95.64% 44.35%  32.249%69.41%
Score 12 18 20 6 4 18

%Lst Area 5.69% 10.76% 4.68% 10.36% 7.18% 8.54%
Score 6 0 8 6 7 6
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%Ext Area  3.33% 0.16% 2.60% 3.54%  1.87%  6.46%
Score 7 10 6 8 9 10

N 1 0 2 0 0 3
Total 57 50 67 59 59 59
Score

pf 10% 0% 20% 0% 0% 15%
Global 51.3 50 53.6 59 59 50.15
Score

ggﬁgted 300A 750A 400C 150B 100C  400A

Our results indicate that the proposed procedurethef parameter
selection is possible. However, this process i$ stibject to some expert
judgment, since a goodness measure or set of nesaswst be chosen and will
influence the global score. A similar procedure wasposed by Costa et al.
(2008) and Happ, Feitosa and Street (2012) whexe ihve used an automatic
method based on genetic algorithms to automaticadjyst the segmentation
parameters to a given set of reference objectgiieesf the robustness of their
method, it is still subject to some expert judgmegfarding the selection of the
parameters to be tested, as well as the manudihedeed objects.

In addition, we have used measures for both undet aver-
segmentation problems, and the weights assignegath measure seem to
influence in the global score and, consequently,ultimate selection. Also, the
choice of training objects influences the finalesgibon. Different observers will
likely choose different objects and manually segmémem differently.
However, this must be considered an advantage isf @pproach: the best
segmentation results can be achieved relative @ost#t of objects which is
considered most important to each analyst.

Finally, we strongly feel that this procedure wiklp to objectively
choose segmentation results.
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3.2. Visual assessment of segmentation results

For the purpose of evaluating the segmentationymexd by the selected
segmentation parameter values, a visual assessmhehe test objects was
performed. Based on visual assessments and intiatipreofthe test objects, all
the scale parameters selected by the proposeddurecerere able to depict very
well these objects. Our results showed good cooredgnce between the
segmentation results and most of the test objétdsiever, we observed that
three test objects were strongly under-segmented Grassland test object D
and the Eucalyptus test objects F and H (Figurd s is due to the fact that
these classes showed the highest values for tthe gasameter, 400 and 750,
respectively. Also, a brief analysis of the objentthe Figure 3 shows that these
objects are close to other spectrally similar fesgtu Therefore, the set of
parameters selected for t@asslandincludes a proportion of 0.5/0.5 (C) for
color/shape where the segmentation was performeellggconsidering the
spectral features and the shape of the object.

Despite their well-defined boundaries, these factoay have led the
under-segmentation of these objects. On the otled,lthe over-segmented test
objects (from J to O) may not represent a problem further post-segmentation
analysis (e.g. classification) as the sub-objertscantained within the borders
of the test object and present the same spectaaacteristics. It is essential to
be able to determine whether inaccuracy in thesifleation process is due to a
poor classifier or a poor segmentation, or eveh.bot
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Figure 5. Representation of the manually delinedt=si objects with the segmentation results forrékand’ (A,B and C),
‘Eucalyptus’(D, E and F), ‘Grassland’ (G, H and‘Forest remnants’ (J, K and L) and ‘Pasture’ (Mahd O).



50

3.1.Metrics similarity

In this study, the Pearson correlation coefficieats used to represent
the relationship between the goodness measuresaldidated the coefficient
for each class separately as well as consideringbgcts together. The results
are summarized in the Tables 2 to 7. We establishitdal value of 0.80, which

means a high correlation between the metrics aafl tables we highlighted the
r coefficients above this value.

Table 2. Pearson correlation coefficient-Bareland

QR *RA +OS  sUS +RMS <%BG <0%LP +%EP
QR | 1.00

‘RA | -0.32 1.00

«0S | 043 054 1.00

US | 1.00 -0.33 -042 1.00

RMS| 036 029 060 038 1.00

‘%BG| 085 -054 -0.25 087 042 1.00

‘%LP | -0.10 048 094 -008 081 005 1.00

“%EP| 0.99 -036 -054 099 028 082 -0.22 1.00

Table 3. Pearson correlation coefficiert- Eucalyptus

QR sRA  +OS  US +RMS +%BG +0%LP <%EP
QR | 1.00

‘RA | -0.11 1.00

«0S | -0.03 047 1.00

US | 1.00 -0.11 -0.03 1.00

‘RMS| 045 031 084 045 1.00

‘%BG| 070 -056 010 070 0.45 1.00

«%LP | 057 035 072 057 091 047 1.00

“%EP| 1.00 -0.14 -005 100 045 071 056  1.00




Table 4. Pearson correlation coefficient-€ Grassland
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QR ‘RA *0OS US ‘RMS %BG *%LP <%EP
‘0QOR 1.00
*‘RA 0.45 1.00
*0S 0.55 0.62 1.00
US 1.00 0.45 0.55 1.00
*RMS | 0.63 0.61 0.99 0.63 1.00
*%BG | 0.39 0.08 0.50 0.39 0.52 1.00
*%LP 0.68 0.63 0.98 0.68 0.99 0.52 1.00
*%EP | 0.99 0.41 0.49 0.99 0.59 0.39 0.64 1.00
Table 5. Pearson correlation coefficient-€ Eucalyptus
QR ‘RA *0OS US ‘RMS «%BG *%LP <%EP
QR 1.00
*‘RA -0.08 1.00
*0S -0.56 0.64 1.00
USs 1.00 -0.08 -0.56 1.00
‘RMS | 0.50 0.51 0.38 0.50 1.00
*%BG| 0.92 -0.06 -0.46 0.92 0.51 1.00
*%LP | -0.17 0.85 0.79 -0.17 0.49 -0.11 1.00
%EP| 1.00 -0.13 -0.61 1.00 0.46 091 -0.24 1.00
Table 6. Pearson correlation coefficient- Forest remnants
QR *RA *0OS US ‘RMS «%BG <%LP <%EP
QR 1.00
*‘RA -0.29 1.00
*0OS -0.47 0.45 1.00
US 1.00 -0.29 -0.47 1.00
‘RMS | 0.63 0.07 0.35 0.63 1.00
*%BG | 0.71 -0.73  -0.34 0.71 0.45 1.00
*%LP 0.46 0.05 0.51 0.46 0.95 0.39 1.00
*%EP| 1.00 -0.31 -0.48 1.00 0.63 0.71 0.46 1.00
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Table 7. Pearson correlation coefficient-€ All classes

*0OR *RA *OS US RMS «%BG *%LP <%EP

QR | 1.00
‘RA | -0.16 1.00

«0S | -0.30 0.86 1.00

US | 1.00 -0.16 -0.30 1.00

RMS| 054 0.60 0.60 054 1.00

‘%BG | 0.92 -040 -0.46 092 036 1.00

‘%LP | 014 082 088 014 081 -0.05 1.00
“%EP| 099 -024 -038 099 048 093 004 1.00

As shown in the Tables 2 — 7, most of the metrieshéghly correlated.
Feitosa et al. (2010) tested the Kendal and theu@mn rank correlations to
express the similarity between the metrics. Theyeh@und that most of the
metrics were highly correlated.

A stricter analysis of our results shows that somedrics presented high
values for the coefficient in all cases such as QR and US; QR%#dP, and
US and %EP. It was also possible to verify thatdibweelation coefficients were
1.0 in most of the cases, which means that thesdcsare, technically, the
same. However, these three metrics were proposédréy different studies. In
our study, these metrics were completely redungdnich led us to conclude
that only one would be sufficient to evaluate tegrsentation and, also, this
redundancy might have caused an unnecessary ircpgdise Global Score. As
seen in the Eqg. 12, the higher the valu& dhe greater the impact of the penalty
factorfp in the Global Score. Consequently, this redundanmay have indirectly
misled the selection of the scale parameter.

Hence, a stricter evaluation of this procedure rbaycarried out by

eliminating the redundant measures and evaluatiegirhpact in the Global

score GS.



53

4. Conclusions

In this study, we have presented a scale pararsetection procedure
based on segmentation goodness measures for sglélati appropriate image
segmentation parameter values from a set of patesambinations. Until now,
no general approach for selecting parameter eXits.concluded that these
measures are not only useful for the selectioregfreentation parameters from a
pool of potential combinations, but also have wtiin reporting the overall
accuracy of segmentation, based on reference ebjébe advantage of our
approach is the selection of a segmentation pasmet based on subjectivity
such as expert opinion or visual interpretation. ¥deld also reinforce that a
single-scale is not suitable to represent the@stiene.

In a future work, we intend to use this procedaredivaluating different
land-cover classes. Additionally, we intend to sefew goodness measures and
increase the number of reference objects as weltaasy out a previous
exploratory analysis in order to eliminate the redhnt measures.
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Abstract: An object-based image analysis approach was faedlassifying
land-cover classes over a vegetated landscape tlsieg supervised machine
learning algorithms: Decision Tree (DT), Randomésor(RF), and the Support
Vector Machine (SVM). The classification data wadrm spatial resolution
RapidEye image. Classification results provided thg machine learning
algorithms were compared in order to evaluate tpeli@bility in the
classification of landscapes with high diversity efvironmental settings. In
terms of overall accuracy, the RF out-performedhbbBl and SVM with
85.05%. The difference between DT and SVM overatiusacy was 1.18%. A
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visual inspection of the maps was also carried \Mg&.observed the RF map, in
general, depicted more accurately all the land<calesses in the region than
the other maps produced by DT and SVM algorithms.

Keywords: object-based, decision tree, random forest, stimector machine

1. Introduction

The use of remotely sensed images for mapping amnitoming land
cover had fundamental importance in recent decaideparticular, due the
development of new techniques and computer progrdmas enhanced the
analysis and manipulation of these digital produidistable advances are being
made in land cover mapping due the technologicahiacement of the recent
and upcoming sensors. These advances rely mostheimcreasing the spatial
resolution and in the introduction of additionahta in multi-spectral sensors.

RapidEye represents a constellation of 5 multispedtigh-resolution
sensors. These satellites are equally spaced assnd-synchronous orbit and
have a spatial resolution of 5 meters (resamplRdyent studies in land cover
mapping suggest that pixel-based approaches haaewdintages for such high
resolution imagery. One alternative to the pixeddgh approach is the
framework known as GEOBIA — Geographic Object-Basmdge Analysis
(Hay and Castilla 2008). Previous studies have guiats advantages over the
well-known pixel-based approach (Belaid et al. 299@rrera et al. 2004; Yu et
al. 2006; Myint et al. 2011). The basic role okthew approach is to merge the
adjacent pixels into spectrally homogeneous objaots lead the classification
process as the objects being the minimum unit dlyais. Object-level
characteristics including shape, size, texture @rdext within neighbourhoods
or hierarchies can all be incorporated into clasaion decision models. While

these additional descriptors can provide improvethssc or feature



59

discrimination, incorporating this new informatioan increase the complexity
of the image analysis process.

Over the last years, machine learning algorithmgehshown great
potential to deal with a high number of predictdrem the object-based
approach as well as to improve the accuracy andbilily of remote sensing
image classification. Several studies have testedriety of machine learning
algorithms in both classification approaches: pba&ted and object-based. In
the context of the pixel-based approach, studieh s Huang et al. (2002)
compared the accuracies from pixel-based classditgroduced using four
different classification algorithms: support vectorachines, decision trees, a
neural network classifier, and the maximum liketilaclassifier (MLC). Their
results showed that the accuracy of the Supporttovellachine classifier
outperformed the other three classification algong. Pal (2005) compared the
accuracies of Support Vector Machines and RandoresiEo (Breiman 2001)
using Landsat Enhanced Thematic Mapper (ETM+) in piael-based
classification. Their results showed that both gatgms performed equally well.
Gislason, Benediktsson and Sveinsson (2006) comparéRandom Forest
approach to a variety of decision tree-like aldors using pixel-based
classification of Landsat MSS data. They found ttheg selected tree-based
algorithms tested performed similarly, but that fRendom Forest algorithm
outperformed the standard implementation of theiddat tree proposed by
Breiman (2001). Chan and Paelinckx (2008) used &anfdorest and Adaboost
for the classification of ecotopes using airboriypérspectral imagery. Their
results suggested that both algorithms showed gifisiant difference in the
overall accuracy. Otukei and Blaschke (2010) comgbathe Maximum
Likelihood classifier, Support Vector Machine, dbelcision Trees algorithms in
a pixel-based approach for land-cover change detecand found Decision
Trees performed better than the others. Lalibertal.e(2006) used an object-
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based approach on Quickbird imagery to compare Nkarest Neighbour

classifier with Decision Tree algorithms. Theirggfound that Decisions Trees
produced better overall classification accuractesntthe Nearest Neighbour
classifier. Stumpf and Kerle (2011) used the oHpested approach on
Quickbird, IKONOS, Geoeye-1, aerial photographsaadat mapping landslides.

They used the Random Forest classifier and thaydf@ecuracies between 73%
and 87%.

Therefore, comparisons between pixel-based andctbsed image
analysis using machine learning algorithms have béen led (Yan et al. 2006;
Platt and Rapoza 2008; Myint et al. 2011; Duro,nklia and Dubé 2012).
According to these comparisons, object-based apbrpeoduced better overall
accuracies and outperformed the pixel-based apiprobt general, many
comparisons were conducted using a relatively sngtdssifier, like Nearest
Neighbour, for the object-based classifications.

Considering the above comparisons and taking adgenof recent
advances in object-based image analysis (OBIA) amachine learning
algorithms, this study aims to examine the objexteld approach in conducting
classifications of a vegetated area in RapidEya déth a selection of machine
learning algorithms: Decisions trees, Random Fowmesi Support Vector

Machine.

2. Methods

2.1. Data and study area

A high-resolution RapidEye image data from the kerrt region of

Minas Gerais, Brazil, is used (Figure 1). This deda a 5,0 m spatial resolution
with five channels: blue (0,44 — 0,5n), green (0,52 — 0,58m), red (0,6, —
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0,68 um), red edge (0,69 — 0,48n) and near infra-red (0,76 — 0,8&) and a

radiometric resolution of 12 bit. This data set wasquired at standard
processing level (orthorectified) by Minas Geralates government in June,
2010.

15°0°0"S

20°0°0"S

50°0°0"W 45°0°0"W 40°0°0"W

Figure 1. Study area located in Minas Gerais, Brazi

This image has an area of 77 x 77 km over the rnpalites of Sdo
Vicente de Minas, Minduri, Cruzilia, Luminarias a@drrancas. The area is part
of the Rio Grande basin, in the micro region of Haavand its vegetation is
characterized as an encounter between Braziliaansavand Brazilian Atlantic
Rainforest, forming rocky fields and gallery foresfThe Brazilian Atlantic
Rainforest is one of the most important biome ia tlountry and originally
covered approximately 1 million square kilometeithim 17 states, representing
16% of the country (Galindo-Leal and Camara 206®)wever, the Brazilian
Atlantic Rainforest has been under degradationesihe colonial period due the
agricultural cycles and the expansion of cultivatedas. Hence, it occupies
approximately 98000 square kilometers, or 8% ofoitginal area and is still

under strong anthropogenic pressure resultinghiglarisk of extinction.
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The land-cover in the study area basically includgassland, forest
remnants, pasture areas, eucalyptus and open Wdéeintentionally selected
this image by its wide variety of environmentaltisgfs due these land-cover
classes which have homogeneous internal propemtiésnost of the classes are
separated by well-defined boundaries. Thereforis, #éinea is under constant
degradation due the agricultural activities andritgpping is an important source

of information about how this degradation has beaurring over the years.

2.2. Image segmentation and feature selection

Image segmentation represents the first step iecbbjased image
analysis. Many segmentation algorithms have beeeldged in recent years, all
of them aiming a homogeneous image segments. THe-remsolution image
segmentation (MRS) implemented in eCognition Devei® software is a
frequently used algorithm in Earth sciences (Bliect2010). The MRS
algorithm uses a “bottom-up” region neighboringeutt$ based on a set of user-
defined parameters such as scale, color/shape,semmbthness/compactness
defining a “stopping threshold”. Additional infortien regarding the
segmentation algorithm can be found in Benz g28004).

The initial RapidEye image analysis included sedgimgrthe image at a
relatively fine scale (400) using eCognition Deysm® version 8.0. The MRS
offers the possibility to assign different weighits the spectral bands of the
image. In this study, all the spectral bands (bgreen, red, red edge and near
infrared) were equally weighted. The value of cillbape used was 0.1 and
compactness/smoothness was 0.5. We intentionafigeclthis combination of
parameters according to a previous analysis in Wi#¢ scale+color/shape
combinations were used to generate different smnafior segmentation

evaluation. Our results showed that the 400 scale the most suitable for all
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the classes. This parameter sufficiently delinea®all features of the scene
such as small forest remnants, small areas of igaahd agriculture.

Following the image segmentation process, objettifes were selected
for use in the object-based classification. Sehgctbject features can be a
subjective process based on the user knowledgéerid Yu et al. (2006),
where the authors used a CART approach to selecfetitures to use in the
classification. In this study we focused on oumoptnowledge of the area to

select the object features. These features aeel listTable 1.

Table 1. Object-features used in the classificgpimtess.

Object features
Spectral bands mean values*
Band Ratios (NDVI and SAVI)
Brightness
Max difference between pixel values
Mean*
Homogeneity*
Standard deviation*
Area
Roundness
Geometry Compacity
Boundarie index/Shape
Length/Width
* Object features were calculated for each spebaatl

Spectral information

Texture
G LCMaIIdirections

In addition to the features found in the softwdine, NDVI index (Rouse
1973) (Eq.1) and SAVI (Huete 1988) (Eq. 2) werealalculated to widen the
feature input for the classification process.

The global NDVI and SAVI can be calculated as falo
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NDVI _ NIR- RED 1)
NIR+ RED

savi=_ NIR-RED
(NIR+ RED* 1)

*@+ D (2)

Where NIR is the reflectance in the near infrared baR&D is the
reflectance in the red band; ahdrepresents the amount or cover of green
vegetation. In regions highly vegetated, L=0; andareas with no green
vegetation, L=1. In this study we used L=0.5.

The total number of object features available te thbject-based
classification is 38, considering that some featupmarked with *’) were
calculated for all spectral bands, as seen in ThAblde unmarked features were

calculates considering individual image objects.
2.3. Sampling data

In this study a visual interpretation of the RapidEmagery as well as
the data from Mapeamento da Flora Nativa e dosoReflamentos de Minas
Gerais (Scolforo, Carvalho and Oliveira 2008) wesed to select the ground
reference data. Eight broad land-cover classes welected for this study:
bareland, grassland, eucalyptus, forest remnardgerwbodies, pasture areas,
clouds and shadow. For the purpose of selectinglesnto use in the machine
learning algorithms, a random sampling approach wused. At first, 1100
objects were randomly selected within the scenagkobjects produced using
the MRS algorithm can vary in size and may contaare than one land-cover
class. Thus, these objects were carefully examirsety visual interpretation as
well as the data from Mapeamento da Flora Nativlb® Reflorestamentos de
Minas Gerais (SCOLFORO, CARVALHO and OLIVEIRA 200®) assess the
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homogeneity of the land cover types in the imageatb and to ensure all the
classes were proportionally represented. Objedts mbre than one land cover
type were not used, leaving a total of 1005 objetterefore, each object was
classified as one of the eight classes. These tsbjeere then split into two
smaller sets of samples using random proporticaralpding, referred asaining
andtest samples. Approximately 70% of the samples (684)ewesed to train
the machine learning algorithms and 30% of the $esn(821) were used for
accuracy assessment purposes. For setting the gt@ramrand testing the models
used by the machine learning algorithms, we useadpaated k-fold cross-
validation based on the training data set only. didenot use the test sample in

this evaluation.

2.4. Accuracy Assessment

Two measures for assessing the accuracy for themtps were used
in this study: i) overall accuracy and ii) the Kappoefficient. The overall
accuracy is easily interpretable as the propomibcorrectly classified samples,
which gives a general overview of the classificatioesults. For each
classification, a confusion matrix was presenteccoifusion matrix is a two-
dimension contingency table, formed by referenda dad thematic data, where
the reference data is presented as the columniseomttrix and the thematic
data, is presented as rows in the matrix. The diagentries represent the
correctly classified samples and the off-diagonaltries represent the
misclassified samples. From this matrix, accurasasares were calculated
such as overall accuracy, user's and producengamcand Kappa coefficient.

All these indices were calculated using tbstsamples.
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2.5. Setting up the machine learning algorithms parameters

The construction, tuning and accuracy assessmetiteomodels were
performed using R version 2.15, a multiplatformemsource language and
software for statistical computing (R DevelopmemiréCTeam 2010). A quick
review of the available literature shows that R bagen intensively used for
classification of remote sensing data using machie&rning algorithms
(Gislason, Benediktsson and Sveinsson 2004; Lawreartd Sheley 2006;
Sesnie et al. 2008; Stumpf and Kerle 2011; DuranKin and Dublé 2012).

For creating the machine learning algorithms usdtiis study, we used
several packages within the R environment:

* For the Decision Tree models (DTs), we used tharsiee partitioning
‘rpart’ package created by Therneau and Ripley Q20dased on the
CART algorithm developed by Breiman et al. (1984);

« For the construction of the Random Forest models)Rve used the
‘randomForest’ package (Liaw and Wiener 2002). Faorther
information about RF algorithms and its codes, nweoerage readers to
refer to Breiman (2001), and;

« For the Support Vector Machine (SVMs) we used Keerilab’ package
(Karatzoglou et al. 2004).

Each of the algorithms used in this study has patars that need to be
defined by the user. To avoid the subjectivity ahdomly choosing these
parameters, we examined a pool of potentials paemasing all three machine
learning algorithms.

For each model, a confusion matrix was generatéugube original
training samples. We considered the optimum paens¢hose that achieved the
highest value of overall accuracy in this procd$ss approach will ensure that
only models with higher accuracy will be used ia thassification process.
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2.5.1Decision tree based models

A decision tree classifier is a non-parametric sifeer that does not
require any a priori statistical assumptions tartzle regarding the distribution
of data. The tree is composed of a root node (fdrfrem all of the data), a set
of internal nodes (splits), and a set of terminades (leaves). The DT
classification is a procedure which recursivelytiians a data set into smaller
subdivisions on the basis of a set of tests defateglach split (or node) in the

tree. The decision of each node is on the form;

n
Zaix < & for multivariate decision tree, o > ¢, for univariate
i=1

trees,

wherex; is theith input featureg, is a suitably chosen threshold aadis a
vector of linear discriminate coefficient (Brodlagd Utgoff 1992). The DTs are
known to produce results of higher accuracies immarison to traditional
approaches such as the ‘box’ and ‘minimum distaloceneans’. In addition,
they handle nonlinear relations between featurelscéasses, allow for missing
values, and are capable of handling both numedccategorical inputs.

For the DTs, the parameter ‘maximum depth’ is ar-dedéined
parameter and it represents the maximum depthyoiaigle node of the trees.
In general, higher values of ‘maximum depth’ wikrggrated more complex
trees whereas low values will produce less compleas. In both cases, it may
affect the overall accuracy. For the purposes obsing the value of ‘maximum
depth’ which provides a model with higher overatcaracy, we tested eight

values of ‘maximum depth’: 4, 6, 8, 10, 12, 14, 18,and 20. The parameter
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with the highest value of overall accuracy was aered the optimum

parameter to be used in the model.

2.5.2Random Forest based models

Random Forest is a general term for ensemble methsithg tree-type
classifier {DT(, 69, m = 1,....}, where thej, are independent identically
distributed random vectors andis an input pattern. The RF classification
algorithm is described in detail in Brieman (200Byiefly, the RF is an
ensemble of classification trees, where each topdributes with a single vote
for the assignment of the most frequent class ¢oiput data. Different from
DTs, which use the best predictive variables atdpis, RF uses a random
subset of predictive variables in order to redieegeneralization error.

In addition, the RF ensemble classifier uses a ihgggr boot-strap
aggregating, making the trees to grow from difféereaining data subsets to
increases the diversity of the trees. Baggingtischnique used for training data
creation by randomly resampling the original datasith replacement. This
technique will ensure that each tree contains &iceproportion of the training
dataset. On the other hand, the samples which @r@resent in the training
subset are included as part of another subsetdcabiat-of-bag” (OOB). For
every tree of the ensemble, a different OOB sulsébrmed from the non-
selected elements. These OOB elements, which arecomsidered for the
training of the tree, can be classified by the teeevaluate performance of the
ensemble.

The RF presents many desirable properties, suchigis accuracy,
robustness against over-fitting the training datad integrated measures of

variable importance
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For the RFs based models, two user-defined parasnetest: the
number of trees used in the modeatk¢es, which represents the number of trees
to grow in the ‘forest’, and the number of variabtested in each split of the
trees (n,,). For these two parameters, we tested a combmefithree values of
ntrees(500, 1000 and 1500) and eight valuesngf (1, 4, 8, 10, 15, 20, 30 and
38) comprising 24 different models. As seen inghevious section, we selected
the one of the 24 pairs of parameters which pralitiee highest overall

accuracy value.

2.5.3Support Vector Machine based models

The support vector machines (SVMs) are a set dtadl learning
algorithms used for classification and regressioat tuses machine learning
theory to maximize predictive accuracy while auttoadly avoiding over-fit to
the data. Like the Decision Trees classifiers, SVéMls also non-parametric
classifiers. Its first formulation was originallyrgposed by Vapnik (1979).
Readers are encouraged to refer to Vapnik (19@®)further discussion and
details on SVMs and Mountrakis, Im and Ogole (20bt )y review on SVMs in
remote sensing.

The success of the SVM depends on how well theggmis trained. The
easiest way to train the SVM is by using lineadparable classes. According to
Osuna, Freund and Girosi (1997), if the trainintadaith k number of samples

is represented as({ vy}, i=1,....k whereX € R" is anN-dimensional space aryd
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€ {-1, =1} is a class label, then these classesansidered linearly separable if

there exists a vectoW perpendicular to the linear hyper-plane (which
determines the direction of the discriminating plaand a scalar b showing the
offset of the discriminating hyper-plane from th&gm. For the two classes, i.e.
class 1 represented as -1 class 2 represented agoHiyper-planes can be used
to discriminate the data points in the respectiasses. These can be expressed
as:

e WX +b>+1forally=+1, i.e. a member of class 1

e WX +b>+1forally=-1, i.e. a member of class 2

The two hyper-planes are selected not only to miaeirthe distance between
the two given classes but also not to include aointp between them. The
overall goal is to find out in which class the ndata points fall. In general, the
SVMs are reported to produce results of higher rmaies compared with the
traditional approaches, but the outcome dependshenkernel used, choice of
parameters for the chosen kernel, and the methedl tasgenerate SVM (Huang
et al. 2002).

For the SVMs based models, a Radius Basis Fun(®Bir) kernel was
used. Others kernels were not taken into considerat this study. In SVMs
based models, there are two user defined paramétest” (C) and “sigma”
(c). “Cost” controls the smoothness of the fitted diion. It creates a soft
margin that permits some misclassifications. Insireathe value of C increases

the cost of misclassifying points and forces theation of a more accurate
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model that may not generalize well. In the othardhancreasing “sigma” affects
the shape of the hyperplane and may also affecbteeall accuracy. In our
study, we tested several values of “cost” (C): 0.5, 1, 1.5, 2, 4, 6, 8, 10, 30,
60 and 120. The parameter “sigmaj (vas estimated using the ‘sigest’ function
implemented in ‘kernlab’ package. This function omls estimating an
appropriate sigma value directly from the data Jdtus, C was the only

parameter tested for the SVM models.

3. Results and discussion

3.1. Image segmentation results

In this study a high-resolution RapidEye image wagmented at a
single level using a scale parameter of 400. Wéopeed the segmentation
using eCognition Developer® version 8.0. A partimw of the segmentation
results can be seen in Figure 2.

It is known that a specific set of parameters magdpce a good
segmentation result when considering a homogensmree but this is not valid
when a heterogeneous scene is under consider§iimce the landscape mostly
consist of different types of environmental setsirod varies in size (e.g. trees,
rivers, forest remnants, etc.), a single-scale @ggr might not be appropriate as
the features within the scene will be under-segetkftvhen part of the feature
become part of another feature) or over-segmentdter( the feature is
segmented into smaller objects). Thus, it may aftfee final overall accuracy of

the classifications.
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Figure 2. Representation of the segmentation esding a scale parameter of 400.
Objects of forest remnants (dark red), eucalyptasl)( grassland (green),
pasture area (light pink), water (dark blue), bamdl (light blue), clouds
(white) and shadow (black) were well delineated.

However, our results suggest that, even considegngingle-scale
approach, the set of parameters used in the segtimentprocess was
sufficiently adequate to delineate most of the disjewithin the scene and
consequently generate relative high accuracy vdtrethe three classifications.
Figure 2 shows an example of delineated objects fadl land cover classes
used in this study. In general, even small objettdouds and irregular patches
of natural vegetation were well delineated usingirmle scale approach. The
segmentation parameters were chosen accordingreveous analysis in which
27 scale+color/shape combinations were used torgendifferent scenarios for
segmentation evaluation. We based our evaluationgdndness measures
available in the literature. The results showed thaalue of 400 for the scale

parameter was the most suitable for all classégerfest.

3.2. Optimized machine learning algorithms parameters
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For the Decision tree based models, ‘maximum depdfties ranging
from 4 to 20 were tested. Based on the highestracgwalue (96.05%), the
model with ‘maximum depth’ value of 4 was selectedbe used in the final
classification. In studies such as Friedl and Rrp@1997) a ‘maximum depth’
value of 20% of the size of the tree was seledtethis approach, however, the
overall accuracy of the model may not be the higtiege consider they did not
tested other levels of maximum depth. In Amoro-lopst al. (2011) a
‘maximum depth’ value was estimated with a 10-fatdoss validation
procedure. In this case, the tree is pruned basednooptimal scheme that
prunes branches offering less improvement to ewst.

For the RF models, an overall accuracy of 97.22% elztained with a
My, value of 4 and atree value of 500. Breiman and Cutler (2007) suggested
the defaultntree as 500 for Random Forest based classificatiorse sialues
greater than 500 appeared to have little influeincthe overall classification
accuracy. In our analysis, the overall accuracyweayed to 93.66% when we
used 1000 and 1500 as found in Breiman (1996) wiggested that when
increasing the number of trees the generalizatioor @lways converges. The
same number of trees (500) was used in studies asidtawrence and Sheley
(2006), Gislason, Benediktsson and Sveinsson (2@dmpf and Kerle 2011
and Duro, Franklin and Dublé 2012.

For the classification using SVMs, the valuecofvas estimated using
the ‘sigest’ function and it was held constant.@t1915945. An overall accuracy
of 98.68% was achieved using a C value of 6.

3.3. Visual inspection of the thematic maps

The thematic maps produced by the three differdgbrithms are

presented in the Figure 3. The major visual difieezbetween the maps is the
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amount of ‘pasture areas’ and ‘bareland’ depictedthe entire scene. We
observed that both maps produced by DT and SVMritgas (Figure 3C and
Figure 3D) present less ‘pasture area’ than the pnaguced by RF, whereas the
SVM map depicted a greater amount of ‘barelandastban DT and RF maps.
Based on our knowledge of the region, some pasta@s are severely degraded
with portions of exposed soil, which might have sedithe misclassification of
‘pasture area’ as ‘bareland’ in the SMV map. Themef the predominance of
‘bareland’ in the SVM map was also caused by thechassification of
‘grassland’ as ‘bareland’. In the DT map, some sreé ‘bareland’ were
classified into ‘clouds’ due the fact that bothsdas are spectrally similar, which
caused the misclassification. On the other handoleerved that the depiction
of ‘forest remnants’ and ‘eucalyptus’ was relativebnsistent in all maps. These
classes are similar, considering their spectralfea. Although the algorithms
differed slightly in the depiction of some vegethtareas, all the three
algorithms depicted both classes very well. Likewthe class ‘water’ was well
defined in all maps, although presenting some mgsified patches in the left
and lower portions of the DT map.

We carried out a visual inspection of the RapidEseene and
considering our experience in the area, we obsetivedRF map, in general,
depicted more accurately all the land-cover classebe region (Figure 3B)

than the other maps produced by DT and SVM algwsth
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- e SN T 2 :
. Bareland . Eucalyptus .Water .Natural Vegetation
|: Clouds _ Grassland . Shadow Pasture areas

Figure 3. Object-based classifications: A) Rapidityage in false color RGB532; B)
Random Forest based classification; C) Decisiore Based classification; D)
Support Vector Machine based Classification.

3.4. Accuracy Assessment

An accuracy assessment using ‘test samples’ (32%)carried out for
each classification produced in this study to eatuthe performance of the
models. Table 2, 3 and 4 contains the detailedusiori matrices for the RF, DT
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and SVM based models, respectively. Overall, usertbproducer’s accuracy as
well as Kappa coefficients were calculated.

Based on the overall accuracies of the confusiotrices, the object-
based classification using Random forest obtainedoeerall accuracy of
85.05% which was higher than 75.70% from Supportctdfe Machine
classification and 71.34% from Decision Tree classion. Their Kappa
coefficient values were 0.8312, 0.7218 and 0.67€dpectively. Since its first
implementation in Breiman (2001), the Random Folest been showing its
superiority over a variety of other machine leagnialgorithms in remote
sensing studies. For example, Pal (2005) compafeteRed models and SVM
based models in a pixel-based classification agpread also found an overall
accuracy consistently over 80% for the RF classifim which was higher than
the SVM. Duro, Franklin and Dubé (2012), in a pikeked approach, also
found a higher overall accuracy for the Random dbteased classification.
However, the Support Vector Machine based model slaghtly superior
(1,18%) to the Random Forest in the object-basaskiflcation.

When comparing the overall accuracy values from &id SVM
models, the SVM model showed a slight improvemdn3q%) over the DT
classification.

However, considering a visual inspection of thesspsn the DT map
showed a reasonably accurate visual depiction efahd-cover classes in this
area. Considering its simple implementation, comgdo the SVM, and even to
RF, the DT model was effective in dealing with swehiable land-cover classes.
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L Reference Data User’s

Classification Accurac

Data Bareland Vegetation Pasture Meadow Eucalyptus Water Clouds Shadow TOTAL (%) y
Bareland 31 0 1 0 0 0 4 0 36 86.11
Vegetation 0 40 1 0 10 0 0 0 51 78.43
Pasture area 0 0 34 0 0 0 0 0 34 100.00
Grassland 0 1 17 59 0 0 0 0 77 76.62
Eucalyptus 0 2 3 0 44 0 0 0 49 89.80
Water 0 0 0 0 0 10 0 0 10 100.00
Clouds 4 0 0 0 0 0 38 0 42 90.48
Shadow 0 0 0 0 1 4 0 17 22 77.27
TOTAL 35 43 56 59 55 14 42 17 321
Producers  — go57 9302 6071 100.00  80.00 7143 90.48 100.00
Accuracy (%)
Overall
Accuracy (%) 85.05
Kappa 0.8312

Coeficient
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Table 3. Confusion matrix for the Decision Treeduhslassification

e Reference Data User’s

Classification Accurac

Data Bareland Vegetation Pasture Meadow Eucalyptus Water Clouds Shadow TOTAL (%) y
Bareland 22 0 0 0 0 0 9 0 31 70.97
Vegetation 0 40 1 0 16 0 0 0 57 70.18
Pasture area 4 0 8 0 0 0 0 0 12 66.67
Grassland 0 1 30 59 0 0 0 0 90 65.56
Eucalyptus 0 2 3 0 38 0 0 0 43 88.37
Water 0 0 0 0 0 13 0 1 14 92.86
Clouds 9 0 14 0 0 0 33 0 56 58.93
Shadow 0 0 0 0 1 1 0 16 18 88.89
TOTAL 35 43 56 59 55 14 42 17 321
Producers oo 86 9302 1429 100.00  69.09 92.86 7857 94.12
Accuracy (%)
Overall
Accuracy (%) 71.34
Kappa 0.6704

Coeficient
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Table 4. Confusion matrix for the Support Vectordiime based classification

L Reference Data User’s

Classification

Data Bareland Vegetation Pasture Meadow Eucalyptus Water Clouds Shadow TOTAL /(0(;/((:);:uracy
Bareland 31 0 20 6 0 1 0 1 59 52.54
Vegetation 0 34 0 0 12 0 0 0 46 73.91
Pasture area 0 2 20 0 2 0 0 0 24 83.33
Grassland 0 7 16 53 2 0 0 4 82 64.63
Eucalyptus 0 0 0 0 39 0 0 0 39 100.00
Water 0 0 0 0 0 12 0 0 12 100.00
Clouds 4 0 0 0 0 0 42 0 46 91.30
Shadow 0 0 0 0 0 1 0 12 13 92.31
TOTAL 35 43 56 59 55 14 42 17 321

Producer's  — gg57 7907 3571 8983 7091  85.71 100.000.59
Accuracy (%)

Overall
Accuracy (%) 75.70
Kappa 0.7218

Coeficient
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The next comparison was based on the user's andpithbéucer’s
accuracies, which measure the commission and amissrors, respectively, for
each land-cover class. The commission errors repteshe probability that an
object classified on the map actually represeras ¢lass on the ground. On the
other hand, the omission errors refers to the fiibaof a reference object
(referred as test sample in this study) being ctyrelassified.

Both RF and SVM maps presented two classes witltaromission
errors: ‘Pasture areas’ and ‘Water’ for the RF raagd ‘Eucalyptus’ and ‘Water’
for the SVM map. For land cover types with distinetspectral features such as
‘water’ it is common to have good values of usacsuracy. On the other hand,
land cover types with similar spectral featureshsas ‘Forest remnants’ and
‘Eucalyptus’ also had good values for user's accyr@anging from 70 to
100%).'‘Bareland’ did not have a good user's acourfmr the SVM map
(52.54%) and it was the lowest value for all theassks in the three
classifications. As seen in the Figure 2, this m&pr-represented the class,
probably because most of bareland pixels were lgtodxed with or around
other land cover-classes, which made it difficoltdistinguish with an object-
based approach. However, RF presented a high usecigacy for this class
(86.11%) and it was clearly more efficient than otigers.

In terms of producer’s accuracy, the DT and RF magesented no
omission error for the class Grassland (e.g. all samples for this class were
correctly classified), while the SVM map presentégh user's and producer’s
accuracy for the class ‘clouds’. Comparing the eéhedgorithms in terms of
user’'s and producer’s accuracy, it is clear thahesgorithm had its strengths

and its weakness in dealing with a specific langecalass.
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4. Conclusions

An object-based classification of RapidEye imagesing selected
machine learning algorithms was performed. This epapvestigated the
capability of three machine learning algorithms r{ikam Forest, Decision Tree
and Support Vector Machine) in conducting clasaffans in a vegetated area.
In terms of visual assessments and overall accutheyRF based classification
over-performed both DT and SVM classifications. s advantage of the
Random Forest classifier is that it requires twlatiee simple parameters to be
set, whereas the SVM, for example, requires compégameters to be set for its
training.

However, considering each class separately, eagbritdm had a
different performance, which may lead us to coneldldat different machine
learning algorithms might be used for the clasatfan of different land-cover
classes. In a future work, we intend to carry etetr analysis of these machine
learning algorithms in order to select the one Wipcovides the best depiction
for a specific land-cover class and combine thegults into a new map to
enhance the overall accuracy and its reliability.
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APPENDIX A — R Tutorials for classification

Decicion Trees

Blue: Function
Green: Example of application.

# ## DECISION TREE ##------------—-

## CHANGE DATA DIRECTORY

## LOAD RPART AND FOREIGN PACKAGES (IF INSTALLED)

library(rpart)
library(foreign)

## CREATING DATA OBJECT
object'sname=read.dbf(“File_name.dbf")

Ex: data=read.dbf("TRAINING_2.dbf")

## SETTING THE FIRST PARAMETERS
control=rpart.control(maxdepth=value,cp=value)

Ex: control=rpart.control(maxdepth=30,cp=0.001)

## MODEL
object=rpart(formula~,data=data_frame_with_the_pred
ors, method="class"(for classification),
control=dataframe_with_the_parameters,xval=value)

Ex: dados.dt=rpart(CLASSNAME ~,data=dados[,c(2,3:40
method = "class",control=control,xval=10)

## CONFUSION MATRIX
table(groundtruth_samples,predict(decision_tree_obj
type="vector"))

Ex: table(dados$CLASSNAME, predict(dados.dt, type =
"vector"))
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i CLASSIFICATION-----nmcmmemmemean

## CREATING DATA OBJECT
samples_for_prediction=read.dbf("unclassified_sampl
file_name.dbf")

Ex: predict=read.dbf("UNCLASSIFIED.dbf")
predict.new=predict[,3:40]

## PREDICTING CLASSES
prediction_object_name=predict(decision_tree_object
newdata=samples_for_prediction, type="class")

Ex: DT=predict(dados.dt,newdata=predict.new,
type="class")

## EXPORTING CLASSES FOR A NEW DATAFRAME
Ex: Class <- data.frame(predict[,1],DT)

## EXPORTING CLASS TO A .DBF FILE
Ex: write.dbf(Class,file="Classes_DT.dbf")
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Random Forest

Blue: Function
Green: Example of application.

## CHANGE DATA DIRECTORY

## LOAD RANDOMFOREST AND FOREIGN PACKAGES (IF
INSTALLED)

library(randomForest)

library(foreign)

## CREATING DATA OBJECT
object’s_name=read.dbf(*File_name.dbf)
Ex: data=read.dbf("TRAINING.dbf")



## MODEL

Randomforest_object= randomForest(formula,data=
data_frame_with_the_predictors,ntree=value,mtry=val
importance=TRUE, na.action=na.omit)

print(Randomforest_object)## for the results and
confusion matrix

Ex: RF <- randomForest(CLASSNAME ~ .,
data=dados[,c(2,3:40)], ntree=500, mtry=8,
importance=TRUE, na.action=na.omit)

## VARIABLES IMPORTANCE
imp <- importance(RF)

print(imp)
varimpPlot(RF)

1 CLASSIFICATION-----smmemmemenav

## CREATING DATA OBJECT
samples_for_prediction=read.dbf("unclassified_sampl
file_name.dbf")

Ex: predict=read.dbf("UNCLASSIFIED.dbf")
predict.new=predict[,3:40]

## PREDICTING CLASSES
prediction_object_name=predict(Randomfores_object,
samples_for_prediction)

Ex: rf.pred <- predict(dados.rf,predict.new)

## EXPORTING CLASSES FOR A NEW DATAFRAME
Ex: Class <- data.frame(predict[,1],dt.pred)

## EXPORTING CLASS TO A .DBF FILE
Ex: write.dbf(Class,file="Classes_RF.dbf")
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Support Vector Machine

Blue: Function
Green: Example of application.

## CHANGE DATA DIRECTORY

## LOAD KERNLAB AND FOREIGN PACKAGES (IF INSTALLED)
library(kernlab)

library(foreign)

## CREATING DATA OBJECT
object’s_name=read.dbf(*File_name.dbf)

Ex: data=read.dbf("TRAINING.dbf")

## SETTING THE FIRST PARAMETERS

## Optimal Sigma Value For The Kernel Function usin g
sigest Functino

object=sigest(formula~.,data=data_frame_with_the pr edi
ctors)

Ex: srange <- sigest(CLASSNAME~.,data=dados)
s <- srange|[2]
rbf <- rbfdot(sigma=s)

## MODEL

SVM_Object=ksvm(formula~.,data=data_frame_with_the__ pre
dictors, type"C-bsvc",
kernel=kernel_function,C=value,prob.model=TRUE,cros s=k

-fold_crossvalidation)

Ex: SVM <- ksvm(CLASSNAME ~ .,
data=dados][,c(2,3:40)],type="C-
bsvc",kernel=rbf,C=1,prob.model=TRUE, cross=10)



## CONFUSION MATRIX

table(groundtruth_samples,predict(SVM_object,type="

ponse"))

Ex: table(dados$CLASSNAME, predict(SVM, type =
"response”))

1 CLASSIFICATION------mrnmemmenav

## CREATING DATA OBJECT
samples_for_prediction=read.dbf("unclassified_sampl
file_name.dbf")

Ex: unclassified=read.dbf("UNCLASSIFIED_2.dbf")
## PREDICTING CLASSES
prediction_object_name=predict(SVM_object,
samples_for_prediction)

Ex: Class <- predict(SVM,unclassified[,3:40])

## EXPORTING CLASSES FOR A NEW DATAFRAME

Class?2 <- data.frame(predict[,1],Class)
head(out,30)

## EXPORTING CLASSES TO A .DBF FILE
Ex: write.dbf(Class2,file="Classes_SVM.dbf")
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