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RESUMO 

 

 

NEVES, Leandro Gomide. M.Sc., Universidade Federal de Viçosa, agosto de 
2009. Detecção e mapeamento de polimorfismo de sequência única 
em uma população segregante de Eucalyptus spp. Orientador: Acelino 
Couto Alfenas. Co-orientadores: Dario Grattapaglia e Marcos Deon Vilela 
de Resende. 

 

 O gênero Eucalyptus apresenta ampla variabilidade genética, 

relacionada a características economicamente importantes, passível de ser 

explorada pela integração de métodos clássicos de melhoramento genético e 

genômica. Apesar dos avanços obtidos pelo melhoramento genético, espécies 

de Eucalyptus ainda estão nos estágios iniciais de domesticação apresentando, 

portanto, ampla oportunidade de ganhos pela seleção direcional. O 

desenvolvimento de mapas genéticos de alta resolução, enriquecidos com 

informação de genes, é uma estratégia com possibilidades de impactar futuras 

aplicações de melhoramento molecular. No entanto, com exceção de 

organismos para os quais o genoma encontra-se sequenciado, as técnicas 

atuais para se localizar genes em um mapa-referência têm mostrado eficiência 

limitada. Recentemente foi demonstrado em organismos modelo que 

microarranjos de oligonucleotídeos desenvolvidos para estudos de expressão 

podem ser utilizados para a detecção de polimorfismos de sequência, gerando 

marcadores denominados polimorfismos de elementos individuais (SFP, do 

inglês Single Feature Polymorphisms). As sondas no microarranjo detectam 

sítios polimórficos de SNPs ou “indels” nas regiões expressas fornecendo 

marcadores específicos de genes que, ao demonstrarem comportamento 
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mendeliano, podem ser mapeados. O objetivo deste trabalho foi aplicar o 

princípio de descoberta, genotipagem e mapeamento de SFPs em uma 

população segregante F1 de E. urophylla x E. grandis. SFPs foram detectados 

com sucesso utilizando microarranjos de oligonucleotídeos contendo 

sequências derivadas de genes únicos gerados a partir de sequências-

consenso de ESTs de diferentes espécies de Eucalyptus. Visto que essa 

classe de marcadores representa regiões gênicas, mapeamento de SPFs se 

torna uma abordagem eficiente para mapeamento em larga escala de genes 

em organismos com genoma não sequenciado. O uso da estratégia de pseudo 

cruzamento teste permitiu a detecção de marcadores dominantes segregando 

1:1 e 3:1 em uma amostra da população de mapeamento. Um mapa genético 

saturado foi gerado com 884 SFPs sobre um mapa de referência pré-existente 

de 180 microssatélites, atingindo uma densidade média de um marcador a 

cada 1,2 cM em 11 grupos de ligação. O uso de um delineamento experimental 

que permite a detecção de SFPs segregando 3:1, além de aumentar a 

densidade do mapa e o número de genes mapeados, possibilitou o aumento da 

qualidade do mapa final. Os resultados também demonstraram que 

aumentando-se o número de sondas testadas por gene aumenta-se a 

probabilidade de detectar SFPs no gene alvo e consequentemente de mapeá-

lo. Este é o primeiro trabalho de desenvolvimento e mapeamento de SFPs em 

Eucalyptus. A possibilidade de mapear genes em larga escala de forma rápida 

e acessível permite a condução de análises de co-localização destes genes 

com QTLs, abrindo espaço para a descoberta de potenciais genes candidatos 

que controlam esses QTLs para futuramente serem testados em experimentos 

de genética de associação. 
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ABSTRACT 

 

 

NEVES, Lenadro Gomide. M.Sc., Universidade Federal de Viçosa, agosto de 
2009. Detection and mapping of Single Feature Polymorphisms (SFP) 
on a high-density short oligonucleotide array for Eucalyptus spp. 
Adviser: Acelino Couto Alfenas. Co-Advisers: Dario Grattapaglia and 
Marcos Deon Vilela de Resende. 

 

 The genus Eucalyptus presents a broad natural genetic diversity for 

economically important traits that could be explored through an integration of 

classical breeding and genomic approaches. In despite of the advances 

obtained by classical breeding, species of Eucalyptus are still in the early 

stages of domestication and, therefore, present several opportunities of gain 

through forward selection. The development of high-resolution genetic maps 

enriched with gene information is a strategy that can possibly impact future 

molecular breeding applications. However, except for organisms where genome 

sequence information is available, current techniques to allocate genes on the 

reference map have shown limited efficiency. Recently, it has been 

demonstrated in model organisms that oligonucleotide microarrays developed 

to assay gene expression can be used to detect sequence polymorphisms, 

generating markers termed Single Feature Polymorphism (SFP). The probes of 

the microarray detect polymorphic loci containing SNPs or indels on expressed 

regions, creating gene-specific markers that can be mapped. The objective of 

this study was to apply the principle of SFP discovery, genotyping and mapping 

in a segregating F1 population of E. urophylla x E. grandis. SFPs were 

successfully detected using oligonucleotide microarrays with sequences of 

unigenes generated by sequencing ESTs from different species of Eucalyptus. 
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Since this class of markers samples gene regions, SFP mapping becomes an 

efficient approach for large-scale gene mapping in organisms with unsequenced 

genomes. The use of pseudo-testcross strategy allowed the detection of 

dominant markers segregating 1:1 and 3:1 in a subset of the mapping 

population. A saturated gene-rich genetic map was generated with 884 SFPs on 

a previous reference map of 180 microsatellites, with an average density of one 

marker every 1.2 cM in 11 linkage groups. The use of an experimental design 

that enables SFPs segregating 3:1 to be detected not only increased map 

density and number of mapped genes but, more importantly, improved the 

overall quality of the final map. The results also demonstrated that increasing 

the number of probes designed per unigene resulted in a higher probability of 

SFP detection for the targeted gene and, thus, of ultimately mapping it. This is 

the first report of SFP detection and genotyping for Eucalyptus. The possibility 

to map genes in large-scale in a quick and inexpensive way allow for the 

conduction of co-localization analysis of these genes to QTLs, creating 

possibilities to discover potential candidate genes for these QTLs to be tested in 

association genetics experiments. 
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1. INTRODUCTION 

 

 Development of genetic maps has been a continuous and important step 

on the study of relevant biological phenomenon and on breeding applications. 

The types of markers used and the density of the genetic map are major 

characteristics that have been evolving over time. From phenotypic mutations 

that followed a Mendelian segregation [1] to the introduction of molecular 

markers, such as restriction fragment length polymorphisms (RFLPs) [2], 

greater marker density has been achieved. Among the class of molecular 

marker to be used, some explore random genomic regions while others explore 

pre-selected regions, a difference predominantly dependent on the degree of 

previous genomic information required by the technique. Although this might not 

seem limiting for model species, it is a crucial point for less studied organisms, 

which represent the majority of important commercial and ecological species 

and where genetic maps may be mostly useful. 

 This is the case of Eucalyptus, a genus comprising more than 700 tree 

and shrub species with original occurrence in Australia and adjacent islands, 

where some of these species have gained increasing silvicultural relevance to 

become one of the world most widely planted hardwood tree species. In spite of 

all its importance, breeding of selected genetic backgrounds is recent and the 

genera can yet be considered largely undomesticated, showing vast natural 

genetic diversity susceptible to be explored by forward genetics approaches 

concomitantly to classical breeding methodologies [3]. 

Along with an increase in marker density, a desirable advance for 

practical applications would be to include gene information on such maps. 

However, current methods for mapping genes, such as single-strand 
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conformation polymorphism (SSCP), cleaved amplified polymorphic sequence 

(CAPS), denaturing gradient gel electrophoresis (DGGE), RFLP, microsatellite 

mining from expressed sequence tags (ESTs) and even SNP genotyping have 

limited throughput on organisms where genome is not fully sequenced or with 

high level of polymorphism resulted from outcrossing. As a consequence, few 

successful applications of these approaches are available for Eucalyptus, 

mostly allowing the mapping of a few dozen candidate genes. 

For instance, Gion et al. [4] developed SSCP and CAPS markers and 

incorporated only eight lignin and symbiosis regulated genes to a reference 

RAPD map. As specific primers have to be designed for each gene, these 

methods are limited by the need to optimize polymerase chain reactions (PCR) 

and electrophoresis conditions to detect polymorphism and map the genes. 

Similarly, RFLP is a laborious process and design of probes on coding 

sequence to detect polymorphism also lacks throughput and, for example, only 

31 cambium-specific ESTs and 14 known function genes were mapped by 

Thamarus et al. [5]. Comparable low-throughput results were also reported for 

pine species, another non-model outcrossing genera, even after considerable 

effort was employed on mapping genes [6]. 

The elevated nucleotide diversity is another characteristic that makes 

those approaches limited. Yet assuming that microsatellite regions are present 

on EST sequences and that sufficient flanking region exists to design specific 

primers, there is a chance that sequence polymorphisms forbid these primers to 

hybridize to the genome or that they are accidentally designed on an exon-

intron border. Moreover, screening, PCR and multiplexing conditions are still 

required to be optimized for all markers prior to its application. Finally, an 

analogous problem happens with SNP genotyping, since currently available 

high-throughput technologies, e.g. GoldenGateTM assay, requires 60 bp of SNP-

free sequence flanking the SNP that will be genotyped to design specific 

primers. Therefore, there is a great chance that many diverse coding regions 

will not overcome this requirement. Such consequence can be observed in the 

recent study in loblolly pine where only 27 candidate genes were mapped from 

a pre-selected 384 OPA [7]. 
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On the other hand, DNA microarray technology has demonstrated to be a 

reliable platform for genomic studies. Since its development from 

complementary DNA microarrays [8], two key aspects allowed their application 

to less studied organisms, being (i) the ability to in situ synthesize 

oligonucleotide arrays [9] and (ii) the recent possibility to design custom arrays 

from some manufactures (as reviewed by [10]). Also, the principle that 

oligonucleotide arrays could be used to detect genetic differences between 

genotypes were first speculated [9] and then proved to be possible in the simple 

genome of yeast [11]. Nevertheless, only five years later it was demonstrated 

for the more complex genome of Arabidopsis by Borevitz et al. [12], who also 

termed this class of polymorphism as Single Feature Polymorphism (SFP). 

The principle of SFP detection relies on the disruption of hybridization 

signal resulted from the hybridization of a sample that contains polymorphic loci 

between its genome and the reference sequence used to design the probes 

present on the array. If distinct genotypes are hybridized to the same array, 

sequence differences between them can therefore be ultimately detected as 

their hybridization patterns change [11]. 

Initially, genomic DNA was used as a hybridization source in yeast [11], 

Arabidopsis [12, 13], and rice [14], with the advantage that hybridizing equal 

amounts of genomic DNA for all samples suggests that every difference in 

signal is likely to be an SFP. However, due to a higher complexity, larger 

genomes tend to incorporate more noise when genomic DNA is hybridized to 

expression array. 

 Ronald et al. [15], Rostoks et al. [16] and Cui et al. [17] were probably 

the first authors to expand the SFP principle and hybridize RNA (in fact cDNA or 

cRNA) to the expression microarray of yeast and barley, with a rationale that 

polymorphisms present in DNA are transcribed into the messenger RNA and 

can also reduce the hybridization intensity signal. This approach has several 

improvements over the previous scenario, mainly allowing for genome 

complexity reduction that enhances the signal-to-noise ratio, and making it 

possible to assess gene expression levels and sequence polymorphism 

genotyping on the same single assay. Moreover, another class of polymorphism 
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based on differential expression of the gene, called gene expression markers 

(GEM), is also possible to be obtained [18]. 

 Regardless of the source of polymorphism, generally called SFP 

unless otherwise stated, genotyping such markers in a segregating family and 

extracting those with Mendelian behavior ultimately should allow the 

development of high-density genetic map where the mapped markers represent 

genes for which the probe sets were originally designed. Consequently, SFP 

mapping can be summarized as a two-fold task involving the detection of 

probes that reveal putative SFP and their evaluation as Mendelian markers in a 

structured mapping population. 

A major advance has been made to develop SFPs in model, self-

pollinated, homozygous species. In these studies, identification of the putative 

SFPs has been made based on signal differences between the two original 

inbred lines. Subsequently, one would search and test for a bimodal distribution 

of these candidate markers in a sufficiently large mapping population typically 

made up of recombinant inbred lines or backcross progeny and genotype every 

individual using as a reference the signal intensity of the inbred parents [18-20]. 

Considering only the literatures where SFPs were fully genotyped and 

mapped, the perspectives are that this approach outperforms any previous 

method develop to incorporate genes on the genetic map of less characterized 

species. For instance, Singer et al. [13] saturated a Arabidopsis genetic map 

with 676 genes using SFP detected from DNA hybridization, but the actual 

number of genes they could have positioned on the map if that was the interest 

could have been close to 8,000. A different study on Arabidopsis that hybridized 

RNA was able to map 187 and 968 genes respectively by the genotyping of 

GEMs and SFPs, with the gene order consistent to the sequenced genome [18]. 

In the more complex genome of barley, Luo et al. [19] reported that they were 

able to map 1504 and 1523 SFPs when leaf and embryo tissue were separately 

used for SFP genotyping of a small subset of 30 doubled-haploid lines. On the 

only study that attempted to genotype microarray markers on outcrossing 

species, Drost et al. [21] mapped 324 SFPs and 117 GEMs segregating 1:1 

using a pseudo-backcross progeny of 154 individuals. Very recently, 71 RILs of 
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hexaploid wheat were genotyped and had 877 SFPs allocated to a genetic map 

along with 269 microsatellites [22]. 

 Motivated by the potential downstream applications that large scale 

mapping of genes might have both in gene discovery and molecular breeding, 

the objective of this study was to apply the principle of SFP discovery, 

genotyping and mapping in a reference population of Eucalyptus. We 

maximized the experimental efficiency by a combination of screening and 

selective mapping to localize close to a thousand genes with sequence 

information derived from EST libraries. We showed that when compared to self 

pollinating crops, outcrossing species can benefit from a different experimental 

design based on the pseudo-testcross mapping strategy [23] where information 

from a subset of the progeny allows clear-cut detection and screening of SFPs. 
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2. LITERATURE REVIEW 

 

2.1. Genetic maps for biology and breeding applications 

After the rediscovery of Mendel’s work on inheritance, it was realized by 

Punnet and Bateson that pairs of alleles might not independently segregate as 

proposed by Mendel, with those originally present in the parents happening 

more frequently in the progeny. The phenomenon was further studied by 

Thomas Hunt Morgan and this observation was attributed to the physical 

linkage of those loci on the same chromosome, guiding his group to postulate 

the principles of developing a genetic map. To explain differences in the 

proportion of alleles in the individuals of progenies from different crosses of 

Drosophila, Morgan speculated that crossing over of the chromosomes could be 

resulting in such recombination and that the more apart two genes are, the 

more likely crossing over is expected to occur. Following this assumption, 

Morgan’s student Alfred Sturtevant was the first to develop a genetic map [1]. 

The implications that genetic maps have had on biology and breeding 

since those pioneer works are enormous. The first markers used were 

phenotypic mutations that followed a Mendelian segregation and therefore were 

mapped in a large F2 population. Perhaps the first application resulting from 

genetic mapping, and indeed a very interesting one, was that Morgan predicted 

Drosophila to have 7,500 factors (genes) [1]. His educated guess was not only 

closer to the ~14,000 currently annotated genes [24] because the resolution of 

their map was not big enough due to a low density of markers. 

Marker density was increased with the use of biochemical markers such 

as isozymes, but it was the development of molecular markers that allowed 
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genetic mapping to became more widely explored in biology and breeding, 

particularly after the development of restriction fragment length polymorphisms 

(RFLPs) [2]. Although these are very informative codominant markers, the 

development of polymerase chain reaction (PCR) let other classes of molecular 

markers to be generated, requiring less DNA and being less labor intensive. 

Random amplified polymorphic DNA (RAPD) were largely explored during the 

last decade and for many species, such as Eucalyptus, it was the first class of 

marker employed to create genetic maps, mostly because it does not require 

previous genomic information [23]. Shortly after, microsatellites became the 

marker of choice for genetic analysis resulting from its elevated polymorphic 

information content, transferability between different genetic backgrounds, 

capability of multiplexing several markers in a single reaction and easy 

detection on capillarity sequencers [25]. Early this decade single nucleotide 

polymorphisms (SNPs) have arisen as possible gold standard markers due to 

their large occurrence and evenly distribution on the genome, even though a 

single SNP is not a multiallelic marker [7]. 

As the generation of relatively dense maps became possible through the 

use of molecular markers, their applications on breeding started to be 

speculated. Genomic regions responsible for controlling a significant portion of 

the phenotypic variation, termed QTLs (quantitative trait locus) were identified 

and even major responsible genes were cloned underneath such QTLs [26, 27]. 

Practical applications of molecular markers, such as genotype identification and 

discrimination, germplasm characterizations and assessments of genetic 

diversity have also been reported in the literature (reviewed for forest species 

by [28]. Nevertheless, a more comprehensive application of such maps to 

marker assisted selection (MAS) is still lacking [3] and new approaches 

requiring an even greater marker density have been proposed, as is the case of 

genome-wide association (GWA) studies and genome-wide selection (GWS) 

[29, 30]. 

Only recently, new methodologies that are less labor intensive started to 

be available for some model species, allowing genotyping of hundreds or 

thousands of markers at a relatively low cost per individual. In general, they no 

longer rely on PCRs but explore instead nucleic acid hybridization technologies 
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to detect sequence polymorphisms. This is the case of DArT (Diversity Arrays 

Technology) markers, a robust class of molecular marker that does not require 

previous genomic information but, as a consequence, interrogates anonymous 

regions for polymorphism [31]; and also of SFP (single feature polymorphisms) 

markers, which make use of some previous available genome information to 

design oligonucleotide DNA microarrays and interrogate these pre-selected 

regions for polymorphisms [12]. 

 

1.2. Genetic maps on Eucalyptus 

 The first genetic map was developed on Eucalyptus with RADP markers 

using a pseudo-testcross strategy [23]. RAPD markers were also used to fine 

map and detect a major gene responsible for rust resistance in a large full sib 

family of E. grandis [32], and preliminary studies involving QTL detection in 

Eucalyptus were also initially developed using this class of molecular markers 

[33, 34]. The use of RAPD markers make such results essentially not 

comparable across genetic backgrounds and consequently there was a shift 

towards the use of microsatellites for genetic and breeding analysis. 

 The codominant nature of 20 microsatellites developed by Brondani et al. 

[35] was explored to generate an integrated map for a E. grandis and E. 

urophylla hybrid. Many more microsatellite markers were further characterized 

and a much denser consensus genetic map was developed for Eucalyptus [25]. 

 A first Eucalyptus’ map that concerned with the incorporation of gene 

information focused on those genes related to lignin biochemical pathways with 

a motivation to propose candidate genes for QTL regions [4]. The single-strand 

conformation polymorphism (SSCP) technique used by those authors requires 

gene-specific PCR primers to be developed and these sequences to be 

amplified through PCR. The polymorphism is then detected by analyzing 

mobility shifts of the amplified single-stranded DNA fragments on non-

denaturing polyacrylamide gel electrophoresis owing to conformational 

differences between genotypes. Clearly, this approach lacks throughput 

because optimum PCR amplification and SSCP electrophoresis migration 
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conditions have to be tested and optimized for each gene before ultimately 

detecting a mappable polymorphism. Therefore, those authors report the 

positioning of only eight genes on a RAPD map of Eucalyptus. 

 Thamarus et al. [5] made a more comprehensive effort to map genes on 

E. globulus pedigree essentially using the RFLP technology using probes for 

known genes. Probes were either already available for some of these genes 

from genomic and cDNA libraries developed by earlier studies, and some 

probes were derived for specific sequences by PCR amplification on genomic 

DNA. RFLP is a laborious methodology and those authors were able to map 

only 31 cambium-specific expressed sequence tags (ESTs) and 14 known 

function genes. 

 Another way of confidentially mapping genes is the in silico screening of 

EST libraries for microsatellite markers. This is a relatively efficient approach 

and markers keep the advantages intrinsic to microsatellites (et al. 

transferability, data quality, multiallelic). The method obviously requires 

microsatellites to be present in the ESTs and primers are developed flanking 

these regions, assuming that enough sequence is available for the EST to 

accommodate primers on both sides of the microsatellite. Regardless of these 

limitations, the amplification of the microsatellite can simply not work because 

the primers might have accidently been designed on an exon-intron border or 

because there is a sequence polymorphism between the primer sequence and 

the sample, which will preclude the hybridization of the primer to the predicted 

site. Furthermore, all the putative markers have to be screened for segregation 

and as a consequence high-throughput is not achieved, although one can map 

many genes depending on the EST library coverage and level of polymorphism 

of the pedigree [36]. 

 Detection of SNPs on the sequence of genes can also successfully add 

few candidate genes on a reference map and different strategies exist to 

genotype such detected SNPs. In an exploratory study, our group resequenced 

the genomic region of some candidate ESTs and genes by Sanger sequencing 

and used the haplotypes created by two neighbor SNPs to genotype a subset of 

the mapping population and anchor some genes to a previous microsatellite 
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map [37]. Similar to other low throughput technologies, the technique employed 

allowed mapping only a few genes. Other methods of SNP genotyping via high-

density platform, such as the Illumina GoldeGate assay can also be used to 

genotype SNPs previously discovered in target genes [38], but its efficiency on 

highly polymorphic species of Eucalyptus with a nucleotide diversity above 1% 

has yet to be tested. 

 

1.3. Microarray technology 

 With the development of genome sequencing projects of model species, 

such as yeast (Saccharomyces cerevisiae) and Arabidopsis thaliana, the 

physical structure of the genome became available for specific reference 

genotypes [39, 40]. Concomitantly, it was also realized that other functional 

information would be required for the understanding of the biology behind the 

sequences, particularly the role of the predicted genes in the organism. 

Although this is a very complex and yet unresolved question [41], understanding 

the transcription patterns of genes, for example the relative difference in 

expression between tissues or biological treatments, became possible with the 

advancement of DNA microarray technology [8]. 

 Shortly, DNA microarray is an evolution of the classical southern blot 

procedure, where, instead of a few genes, it is possible to assign the expression 

level of every single gene of the organism. Another difference is that the DNA 

sequences representing the genes are now covalently bound to a small 

rectangle glass matrix. For example, Agilent’s microarray (Agilent technologies 

Inc.) measures around 7.5 cm by 3 cm, similarly to a microscope slide, and can 

fit up to one million features. On this surface, genes are allocated in a XY 

coordinate plane that allows the system to track back the signal to its relative 

gene [10]. 

 Although whole genome sequence information is available for more than 

180 organisms ([42], accessed on July 19, 2009), allowing the design of high 

quality probes to be included on the microarray, this information was not 

available at the birth of the technology nor is available today for all species. 
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Besides, sequencing a unique genotype obviously does not represent all 

polymorphisms present in the species, which is particularly relevant for species 

where interespecific hybridization is commonly used in breeding. This raises the 

question of where to extract the sequence information that will represent the 

genes and populate the microarray. 

 When DNA microarray technology was first developed, the pioneering 

work of Schena et al. [8], carried out even before the Arabidopsis’ genome was 

sequenced, used cDNA representing 64 genes spotted on glass by an 

automatic robot to represent the genes. In the forestry scenario, Kirst et al. [43] 

working with Eucalyptus also used spotted cDNA comprising 2,608 genes to 

populate the microarray, selecting them from a library of ESTs. 

 An interesting characteristic of cDNA microarrays resides in the fact that 

cDNAs are long fragments representing the transcribed part of the gene, being 

therefore robust to variation in signal due to length polymorphisms and SNPs 

between the sample and the library used to obtain the cDNAs. This means that 

if one is simply willing to measure gene expression levels in highly polymorphic 

species, the results would theoretically be less influenced by such class of 

polymorphism [44]. Nevertheless, spotted cDNA have the drawbacks of being 

labor intensive to produce, presenting several significant sources of variation 

that might confound the expression analysis and being more potentially affected 

by cross-hybridization problems [10]. 

 The concept of high-density, in-situ synthesized, oligonucleotide 

microarrays arose to overcome some of these disadvantages associated with 

cDNA microarrays [9]. Instead of pre-synthesizing the sequences that will be 

present in the microarray, generally by PCR of the cDNA clones, the DNA 

sequences representing the genes are synthesized straight on the glass surface 

that will constitute the microarray, allowing a better control of the quantity and 

quality of the DNA present on the microarray. The design of these genes 

representations require sequence information for the species to allow the 

selection of several short probes (typically between 25 and 60 bases long), 

based on uniqueness scores, GC content and other empirical criteria to sample 

the 3’ end of each open reading frame (ORF), defining a probeset for a 
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particular gene. In other words, all the desired target genes would be 

represented by a probeset. One of the first versions of this format was a 

probeset of 20 probes, each one 25 bases long, constituting the Affymetrix 

GeneChip Array [9]. Wodicka et al. [9] were also the first to raise the possibility 

of using microarrays to detect genetic differences between genotypes. 

 A final significant evolution in the microarray technology came with the 

possibility to customize the probes that will be present on the array. This gives 

the researcher mobility to choose the regions of the genome one wants to 

consider most and the degree of coverage and redundancy allowed for each 

probeset (i.e. the number of probes per probeset). Longer probes can also be 

customized, up to 85-mer, although this size is constantly being improved. Such 

customization process allowed the construction of high-density in situ 

synthesized oligonucleotide arrays based on EST library information for species 

with unsequenced genome (reviewed by [10]). 

 Microarray analysis is prone to confounding sources of variance biasing 

the expression signal information. Appropriate experimental designs and 

statistical analyses have to be considered to account for these issues, allowing 

for the most accurate estimation of levels of gene expression. Even after 

controlling for these variations, inherent “noise” is a peculiar characteristic of 

microarray data, making confidence in the estimated parameters an important 

information extracted from appropriate statistical analysis. Kerr and Churchill 

[45] were some of the first authors to ask such questions and connect 

microarray experiments to classical experimental theory. For example, they 

illustrated the sources of variance commonly seen in a microarray experiment. 

They proposed the analysis of variance (ANOVA) as a way to separate 

biological variation from technical confounding effects and suggested new 

experimental designs based on classical experimental theory. 

 In the early days of large scale expression analysis via microarrays, one 

contrasting treatments (e.g. pathogen infection; different mutated strains) would 

have its transcription level compared to a common control (e.g. non-infected 

genotype; wild strain). Then, RNA samples of the treated genotype would be 

labeled with red and those from the control sample with a green dye, mixed and 
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hybridized together to the array. Based solely on the relative red to green 

intensity signal a gene would be called differentially expressed (see picture 1 of 

[46]. 

 It was quickly recognized that microarrays experiments could be 

designed in a factorial fashion and mixed-model analysis of variance could be 

used to test for significance in the main and interaction effects [46, 47]. 

Furthermore, the sources of variation in microarray data became largely 

understood and could be considered in a more appropriate experimental 

design, incorporating the principles of randomization, replication and blocking. 

For example, every microarray or slide is said to be an incomplete block with 

space for two treatments (the two dyes) and the genes or probes considered to 

be the fundamental experimental units [45, 48]. 

 During the laboratorial part of a microarray experiment, several steps 

might introduce variation for specific genotypes that are neither biologically 

meaningful nor inherent to the microarray technique. Ideally, tissue collection, 

RNA extraction and every other subsequent reaction (labeling, hybridization, 

washing and scanning) should be performed in the same moment under the 

same exact conditions. However, when the experiment requires dealing and 

collecting samples from hundreds of genotypes this obviously becomes an 

unfeasible task and even more variation is incorporated. These examples of 

experimentally introduced variation that are not related to the biology, 

sometimes called “batch effects”, are a subset of variation that can be controlled 

by using appropriate experimental practices, as shown by Yang et al [49]. 

These authors presented comparable experimental data from four different 

laboratories to discuss that if batch and biological effects are confounded, it is 

impossible to extract reliable conclusions out of the data. As a result, 

reproducibility is compromised and comparisons between laboratories are 

inappropriate. 

 In a classical microarray experiment there are four main sources of 

variation and their interactions. Array or slide effect represent situations where 

the overall signal is variable for particular arrays. Dye effect refers to one dye 

being consistently different than the other, evidenced when using Cy3 (higher 
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signal) and Cy5 (lower signal) dyes. Genotype (or treatment) effect indicates a 

case where particular genotypes have an overall signal difference from the 

remaining genotypes for the genes under study. At last, gene effect will show 

circumstances where certain genes show higher or lower signal compared to 

other genes [48]. Although it is believed that all these sources will contribute to 

variation in the data, the higher quality of the in situ synthesized oligonucleotide 

array tends to reduce their relative influence, for example reducing problems of 

gene effects, since equal amounts of DNA are synthesized on every microarray 

spot. 

 When measuring gene expression level, the second order interaction of 

genotype x gene is the effect of interest, indicating genes that have their signal 

intensities varying according to the genotype. Other combinations of second 

order interaction are due to technical variation and the higher third and fourth 

order interactions are assumed to be irrelevant [48]. Finally probe effects are 

present when a gene-level analysis is performed in oligonucleotide arrays, and 

significant genotype x probe interaction indicates genes with putative single 

feature polymorphism (see below). 

 To estimate components of variance for every effect as well as 

significance for effects of interest, a mixed-model analysis of variance is usually 

suggested, with slide effect and its interactions being considered random and 

the remaining effects considered fixed, except for the mean and the error, which 

are always assumed to be fixed and random, respectively [50, 51]. 

 A logical implication of identifying the sources of variation that most likely 

introduce variation in the data is that they can be considered in experimental 

designs. The first design used was the reference design. Here, one reference 

sample (a genotype or treatment) is hybridized to every array with each of the 

other treatments at a time, allowing pair-wise comparisons between the 

treatments and the reference. One of the problems of this approach is that 

genotype effect is completely confounded with dye effect, which may create 

further inaccurate results. Kerr and Churchill [45] proposed the loop design as a 

practical alternative to the reference design, where a reference sample is no 

longer used and the samples of interest are independently labeled with both 
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dyes. The loop starts when the first array is hybridized with the repetition two of 

the sample 1 and the repetition one of the sample 2; followed by the second 

array hybridized with the repetition two of the sample 2 and the repetition one of 

the sample 3; and the loop is continued until the last array, which is hybridized 

with the second repetition of the sample n and the repetition one of the sample 

1 [52]. 

 When compared to the reference design, the loop design is a robust 

experimental design for two-color microarrays that increases the number of 

observations for the samples of interest and has no confounding effects. It also 

provides degrees of freedom for estimating the error variance [48]. A final 

remark about the loop design is that it requires every sample to be labeled 

twice, which might increase the costs of the experiment without increasing the 

number of biological repetitions. Therefore, adaptations of this method to 

accommodate the experimental budget is possible if one assumes that the 

resulting confounding effects (if any) will not influence the analysis [53]. 

 

1.4. SFP technology 

With the development of oligonucleotide arrays, the idea that sequence 

polymorphism would affect hybridization intensities, allowing for the detection of 

genetic differences between genotypes, was first speculated and later proved in 

yeast [9, 11]. The application of this principle to species with more complex 

genomes was only proved to be possible five years later by Borevitz el al. [12], 

to the yet relatively simple genome of Arabidopsis. Their work triggered a series 

of studies using DNA microarrays to detect polymorphism and this type of 

polymorphism was termed Single Feature Polymorphism (SFP). 

 Hybridization of genomic DNA was first used in studies involving SFP 

detection, however always on organisms with simple genome [11-14]. As larger 

genomes tend to have a greater proportion of repetitive sequences that can 

incorporate bias to the analysis, soon there was a change towards the 

hybridization of RNA for more complex species [15-17]. Concomitantly, new 

statistical methods to detect probes behaving as SFPs had to be developed, as 
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differential expression between genotypes influence the hybridization signal 

and, therefore, complicates the detection of SFPs. For example, Wang et al. 

[20] demonstrated that the classical method developed by Winzeler et al.[11] is 

not the most efficient when expression is incorporated. Other advantages of 

using RNA rather than DNA are also reported on the literature, particularly the 

possibility to use the data for both expression analysis and genotyping and to 

obtain another class of polymorphism based on differential expression, called 

gene expression markers (GEM) [18]. 

 While SFP is an inherent characteristic of a single probe of a probeset, a 

GEM is expected to change the expression profile of all the probes of that 

particular probeset. This can be explained by analyzing the genetic basis of 

each type of polymorphism. An SFP has its signal altered due to a SNP, 

insertion or deletion, or even a polymorphism generated during mRNA 

processing (e.g. alternative splicing and polyadenylation) [16]. On the other 

hand, the constitutive signal variation of the probes belonging to a probeset 

affected by a GEM is primarily a consequence of cis and trans-acting regulators 

of gene expression [19]. 

The position and number of polymorphisms present in the region 

explored by the probes play a major role on SFP detection. It has been reported 

that a greater chance of SFP detection occurs when the polymorphism is 

present on central regions when compared to the border of the probes [15, 17] 

and for cases where multiple polymorphisms exist [16]. The number of 

polymorphisms present along a probeset may also influence the SFP detection 

depending on the statistical method employed and most of the methods 

developed so far assume that there is one or only a few polymorphic probes per 

probeset [15, 54]. 

Although a major advance has been made to develop SFPs in model, 

self-pollinated, homozygous species, recent works have proposed its 

applicability to other less studied and complex organisms, such as poplar [21] 

and wheat [22]. Not all studies published on SFP ultimately genotyped a 

mapping population with those markers, but instead several of them were 

restrict to the detection of SFPs [14, 54, 55]. On the other hand, considering 
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those where efforts were made to genotype the detected SFPs, number of 

mapped markers varies from hundreds to thousands of SFPs [13, 18, 19, 21, 

22]. 
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2. OBJECTIVES 

 

 The general objective of our work was to apply the SFP technology to 

large-scale mapping of genes in a reference map of Eucalyptus. This general 

objective can be broken down into four more specific objectives: 

i) Design an in situ oligonucleotide microarray for Eucalyptus from 

previously available EST resources; 

ii) Identify and genotype SFPs on a subset of a mapping population 

using the pseudo-testcross strategy; 

iii) Develop a saturated gene-rich genetic map of Eucalyptus based on 

SFP genotyping; 

iv) Propose an optimum SFP screening and mapping approach that 

could be used to maximize the number of genes mapped for other 

less genomically characterized outcrossing plant species. 
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3. MATERIAL AND METHODS 

 

3.1. Eucalyptus pedigree selection 

An interespecific cross between E. urophylla (U15) and E. grandis (G38) 

was selected for this study. The whole family comprising 250 individuals was 

planted in southern Brazil (State of Rio Grande do Sul) at Aracruz S.A. The 

experimental design used was in single tree plots with five blocks so that each 

individual was clonally replicated and five ramets were available for the study. A 

linkage map with 220 microsatellites markers was available for 188 individuals 

of this same family (Mamani et al. unpublished). 

From the collected field grown trees, 28 biologically replicated individuals 

and 134 unique individuals were available for the subsequent analysis, all of 

them matching the microsatellite data set and with parentage and clonal 

confirmation after analysis of six highly informative microsatellites (Additional 

file 1). 

To optimize experimental costs while extracting the best linkage 

information, 68 individuals were selected based on the distribution of 

recombination breakpoints observed in the microsatellite dataset using the 

selective mapping approach implemented by the software MapPop 1.0 [56]. As 

the mapping data for the microsatellites was derived from a cross between two 

heterozygous individuals, and the software only deals with dataset derived from 

crosses between inbred parents with known linkage phase, the selection had to 

be carried out for each parental map separately. From the 68 individuals 

selected from each parental map data, 41 could be selected that overlapped 
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between the two selected datasets and the remaining ones were taken in equal 

proportions from the non-overlapping to equally represent each parental map. 

 

3.2. Microarray design 

 A Eucalyptus transcriptome custom array was ordered to perform the 

present study. Sequence information was available from the Genolyptus 

interespecific unigene set generated from ESTs derived from four species (E. 

grandis, E. urophylla, E. globulus, E. pellita) involving a total of 21,428 unique 

sequences [57]. 

The 21,428 unique sequences were submitted through Agilent’s eArray 

software tool to generate a total of 214,218 25-mer probes at a rate of 10 

probes for every sequence. Shortly, the algorithm selects the 10 best 

sequences of 25 bases for each consensus according to an appropriate GC 

content, melting temperature and cross-hybridization probabilities to optimize 

hybridization conditions for the designed microarray. Also, a note with base 

composition (BC) and non-self perfect match (NSPM) scores is created as a 

quality index for every designed probe. 

The microarray used for the SFP genotyping was developed in the same 

way done to screen informative molecular markers. A preliminary step involved 

screening a large number of probes for the largest number of genes possible 

within the affordable microarray format. From the 214,218 designed probes, we 

attempted to select five high-quality probes for each unigene. For a random 

subset of 1,308 unigenes 10 probes were selected while for 2,868 unigenes 

there were less than five high-quality probes available. The final screening array 

had 103,000 probes representing 20,726 unigenes with a variable distribution of 

probes per unigene (Additional file 2). Twenty-six negative control probes were 

included on the array for background expression normalization with their 

sequences reported elsewhere [58]. The screening step was carried out with 14 

arrays in a 2 x 105K Agilent slide format with a set of 28 progeny individuals 

with two biological replicates. From the results of the screening step a smaller 

array containing only selected expressed probes, i.e. with signal above a given 
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threshold, was designed to be used to hybridize the remaining progeny set 

previously sampled by selective mapping based on the microsatellite linkage 

data.  

The microarray used for the full scale progeny genotyping included 

43,777 probes selected from the results of the screening step. These probes 

represented 15,698 genes and were selected based on a set of criteria (see 

results). As a result, the full scale genoypying experiment used 17 Agilent 

customized arrays in a 4x44K slide format. The 26 negative control probes were 

again included on the array. 

The sequence information for both screening and genotyping array is 

available upon request. 

 

3.3. Tissue collection, DNA and RNA preparation and expression profiling 

Differentiating xylem and expanded leaves was collected from each tree 

during a period of four consecutive days respectively for RNA and DNA 

extraction. An area of approximately 20 cm x 10 cm had the bark removed and 

the exposed tissue was collected by scraping this area (Additional file 3). The 

trees were 54 months old, growing under standard silvicultural conditions. 

Tissue collection was carried out in January 2008 during the active growing 

season to maximize transcript abundance. Immediately upon collection, tissues 

were stored in 50 mL sterile tubes under dry ice until they were lyophilized for 

further transportation and storage at room temperature. The parental trees were 

not planted on the area and could not be sampled. Nevertheless, frozen leaves 

were available for DNA extraction. 

For microsatellite genotyping for parentage and identity verification, 

genomic DNA was extracted from leaves following standard procedures [23] 

and diluted to 2 ng/μL. A multiplex PCR reaction was carried out using the 5X 

Multiplex PCR Kit (Qiagen, Valencia, CA, USA), with the following volume 

modifications: 2.5 μL of PCR Master Mix, 0.5 μL of Q-Solution, 0.4 μL of 

RNase-free water, 10-6 μmols (x 6) of fluorescent labeled primers and 1 μL of 

DNA, for a total reaction volume of 5 μL. All other steps of the amplification 
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reaction followed the manufacturer recommendations. Electrophoresis was 

carried out on an ABI 3700 sequencer (Applied Biosystems, Foster City, CA, 

USA). Genotyping analyses were carried out using GeneScan 3.7 and 

Genotyper 3.7 (Applied Biosystems). 

Total RNA extracted [59] from xylem tissue samples was treated with 

RQ1 RNase-free DNase (Promega, Madison, WI, USA), purified in mini spin 

columns (RNeasy Plant Mini Kit, Qiagen) and had the quality visually checked 

on agarose gels. Between 150 and 200 mg of lyophilized tissue was used for 

RNA extractions. Concentrations varied considerably according to tissue quality 

but absorbance ratios of 260/280 nm and 230/260 nm were generally between 

1.8 and 2.2, as measured on a NanoDrop (NanoDrop products, Wilmington, DE, 

USA). The Two-Color Quick Amp Labeling Kit (Agilent Technologies, Santa 

Clara, CA, USA) was used to synthesize complementary RNA (cRNA) taking 

advantage of the low RNA input required. Manufacturer’s protocol was followed 

except for dividing all reagents’ volume by two to reduce costs. All samples 

yielded enough labeled cRNA for hybridization as recommended by the 

manufacturer. Samples were hybridized at the Interdisciplinary Center for 

Biotechnology Research (ICBR) of the University of Florida following Agilent’s 

protocol, except for lowering the hybridization temperature to 55 oC to 

compensate for the shorter probes. Randomization of all laboratorial steps was 

a rule whenever possible. 

 

3.4. Microarray experimental design 

 A loop design [48] was adopted both in the probe screening and 

genotyping experiments. From the two biological replicates present in the probe 

screening step, one was labeled with Cy3 dye while the other with Cy5. We 

opted for this approach aware of the confounding effects of dye and individual 

to reduce labeling costs. As biological replicates were not available for the full 

scale genotyping experiment, mRNA from each one of the 68 individuals was 

labeled with both dyes providing only technical replication. 

 



23 
 

3.5. Selection of informative SFPs in the probe screening experiment 

Log2 transformed, quantile-normalized data for the 20,726 unigenes with 

expression profiled in 28 biologically replicated individuals (two independent 

replications) were analyzed by a mixed-model ANOVA with two subsequent 

steps adapted from Wolfinger et al. [50] and Rostoks et al. [16]. The first linear 

model is:  

gjkjkkjgjk ADDAy εμ ++++=  

Where,  gjky  is the log2, quantile-normalized measurement from the gth 

gene (g = 1,…, 20726), jth array (j = 1,…, 28), and kth dye (k = 1, 2). Note that 

the two chambers present on the microarray slide were considered unique 

arrays because they were independently hybridized and that two distinct 

repetitions of a genotype were hybridized to the same chamber in a two-color 

design. Moreover, μ is the overall experimental mean,  A  is the global main 

effect for arrays, D  is the global main effect for dies, AD   is the global 

interaction effect of arrays and dies, and ε  the normal error. Dye was 

considered as a fixed effect whereas array and its interaction as random effects, 

except for the mean and error that were always fixed and random effects, 

respectively. This first model globally normalizes the data and reduces 

computational time. The residual from this model for each individual on every 

observation, referred as gipjr , was used as the input for a second gene specific 

linear model, which was: 

gipjipjpigipj GPAPGr γμ +++++=  

 With G  being the effect of genotypes (i = 1,…, 28), P  being the effect of 

probes (p = varies according to gene from 1 to 10), GP  being the interaction 

effect of genotypes and probes, and γ  being the random error. Genotype, 

probe and their interaction were considered as fixed effects, array as random 

effect, and mean and error respectively as fixed and random effects. This 

second model was fit on a gene-by-gene analysis and, thus, all values were 

indexed at the gene level. In other words, an ANOVA was performed 20,726 
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times to fit this model on each gene’s dataset. The ANOVAs were implemented 

on SAS 9.1 using the Proc Mixed statement. 

 F tests for the genotype by probe interaction effect of each gene were 

performed and the probabilities were corrected for multiple testing using a 

modified false-discovery rate on Q-value 1.0 [60]. Significance of this test 

indicates genes with putative SFPs. A further analysis was then carried out 

within genes to identify probes that revealed SFPs by clustering the averaged, 

log2 transformed, quantile-normalized data for the 28 individuals into two 

clusters as described below. Finally, a segregation analysis by a chi-square test 

and modified normal deviate were performed to select distinct clusters 

corresponding to individual probes that segregated 1:1 or 3:1 using the same 

stringency described below, resulting in SFP candidates. 

 

3.6. Full scale SFP genotyping and map construction 

A total of 96 (28 + 68) F1 interespecific full-sib individuals had their 

expression profiled for 43,777 probes. The raw median signal intensity for each 

probe of all 192 hybridizations were log2 transformed and quantile-normalized 

using the Affy package on R [61]. The averaged normalized data for the 96 

individuals was used for the simultaneous identification and genotyping of 

putative SFP through a k-means clustering analysis modified by Drost et al. [21] 

from Luo et al. [19]. Shortly, the learning algorithm allocates the signal intensity 

of each genotype into two distinct clusters on a per-probe basis. [21]. The 

progeny size (n=96) allowed the identification and distinction of probes 

segregating 1:1 and 3:1 after a stringent chi-square was used ( 2
1.. =fdχ <3.84, 

P>0.05) and probes that did not follow this expectation were excluded from the 

subsequent analysis. Based on the mean and standard deviation calculated for 

each cluster, the probability that the individual assigned to one cluster is not a 

member of the other was calculated using the modified normal deviate 

jjii smxz /)( −= , where ix  is the signal intensity of an individual from cluster i 

and jm  and js are the mean and standard deviation of the cluster j [19]. 

Individuals with zi ≤ 1.96 have a probability equal to or greater than 5% to 
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belong to the other cluster and, thus, a greater chance of being ambiguously 

genotyped. To reduce miscall rate they were scored as missing data and we 

only kept probes with less than 10% of missing data (i.e. at least 86 progenies 

accurately genotyped considering this stringency). Selected probes segregating 

1:1 (pseudo-testcross) and 3:1 (dominant F2) received the acronym of BC and 

F2 reflecting their segregation configurations. 

 When a probeset had multiple probes selected through the pipeline 

described above, an empirical iterative method was developed to select the 

best possible probe for the probeset as follows: (i) the probe with less missing 

data was selected; (ii) probes revealing F2 SFPs were preferentially selected 

over BC; and (iii) probes with the greatest gap between clusters mean were 

selected. After applying these three criteria only one probe per probeset was 

selected for mapping. Clustering analyses were implemented on SAS 9.1 using 

Proc Fastclus and filtering steps were implemented on JMP 7.0 (SAS Institute, 

Cary, NC, USA). 

 Progeny individuals were coded using a binary coding (lm or ll for 1:1 

SFPs or h- or kk for 3:1 SFPs) for mapping according to the assignment to each 

cluster for each probe. SFP genotyping information for the 96 individuals was 

consolidated to a 181 microsatellite dataset. JoinMap 3.0 [62] was used for map 

construction with the following parameters: population type CP; grouping at 

LOD> 7; recombination fraction ≤ 0.4; ripple value = 1; jump in goodness-of-fit 

threshold (the normalized difference in goodness-of-fit chisquare before and 

after adding a locus) = 5 ; Kosambi mapping function. Marker ordering with 

Joinmap was carried out by simulated annealing, excluding markers that 

contributed to unstable marker orders in the first two ordering rounds to yield 

framework maps. The microsatellites anchoring the SFP markers have been 

previously mapped using both MapMaker and Joinmap and thus provided a 

reference framework map ordering on which the large number of SFP markers 

could be mapped. 
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4. RESULTS 

 

4.1. Analysis of expression and microarray design 

 To develop an optimum approach for mapping genes in outcrossing 

species by SFP genotyping, we generated a custom in-situ synthesized 

oligonucleotide array. A microarray was first designed for the probe screening 

step and only a relatively small set of individuals was hybridized to an array 

containing the whole unigenes generated during the Genolyptus Project. 

Following the probe screening step, a new microarray containing only pre-

selected probes was used for the full scale genotyping experiment to generate 

the segregation data for map construction. The screening array had 103,000 

high-quality unique probes representing 20,726 unigenes, from now on named 

genes for simplicity. On average, each gene had five non-overlapping probes 

designed to randomly interrogate its sequence. For 1,037 genes ten non-

overlapping probes were designed to evaluate if a larger probability of revealing 

SFPs could be arrived to by using a larger number of probes in the probeset. 

 To correct for global variation between arrays we quantile-normalized the 

data, Log2 transformed and averaged the expression signal for each repetition, 

resulting in 103,000 signal variables for each genotype. On this probe screening 

dataset derived from the hybridization of 28 individuals expressed probes were 

identified. An individual was considered not to be expressing a particular mRNA 

when the signal for a particular probe was below 2.297 rfu (relative fluorescence 

units), which represented 90% of the signals for the 26 negative control probes 

present on the array, excluding four control probes that were clearly expressed 

(outliers). When 25 or more individuals (90%) had their signals below that 
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threshold the probe was considered to be not expressed. This stringency only 

excluded SFPs if they had severe segregation distortion. 

 From the initial set of 103,000 probes, approximately half (51,661) were 

considered to be expressed, an expected low result that reflects the relatively 

complex tissue and species composition of the EST dataset that was 

assembled in the unigene set used to design the probes. For example, flower 

tissue was sampled and ESTs sequenced were represented in the unigene 

dataset. Transcripts specific to this tissue would most likely not be present in 

the xylem tissue used in this study. Nevertheless, expressed probes accounted 

for 78% (16,163) of the genes represented on the array, indicating that the 

number of expressed probes per gene varied considerably (Figure 1). 

Interestingly, even though the full transcripts would be theoretically present, for 

only 3,622 genes all the probes initially designed were consistently expressed, 

which might be a result of polymorphisms between the unigene probe sequence 

and the transcripts expressed by the parents (Figure 1). On the other extreme, 

almost the same amount of genes (3,513) had only one probe expressed and 

although this might partially be a consequence of the ad hoc expression cutoff 

threshold used that, if changed, could have excluded these probes or included 

more probes, it could also be the influence of developing microarray from 

complex EST libraries (Figure 1). For instance, it could be that several probes 

(four in this case) had a polymorphism between the unigene probe sequence 

and the transcripts expressed by the parents.  

 To fit the expressed probes in a 4 x 44K Agilent slide format, we further 

reduced the 51,661 expressed probes by removing the probes with lowest 

mean and standard deviation intensity signal, based on the premise that these 

were likely not to reveal SFPs. The microarray designed following the probe 

screening experiment thus comprised 43,777 probes interrogating 15,698 

distinct genes, with a variable number of probes per probeset. This array 

containing selected probes was used to genotype the 68 further individuals 

chosen based on the Selective Mapping approach. This procedure identified the 

most informative individuals in terms of complementary recombination 

breakpoints from each parent, optimizing the linkage information to be extracted 

from these individuals. 



28 
 

4563
22%

3513
17%

9028 
44% 

3622 
17% 

None designed
probes expressed

Only 1 probe
expressed 

Variable number of
probes expressed

All initially designed
probes expressed

 

 

 

 

 

 

 

Figure 1: Number of probes expressed per probeset compared to what was 
initially designed on the screening microarray. A probe-level analysis of 
expression for the 20,726 unigenes considered probes not expressed when 
more than 90% of the individuals had signal below a background threshold. 

 

 

4.2. Simultaneous detection and genotyping of SFPs in progeny data 

 The averaged, Log2 transformed, quantile-normalized data for the 96 

individuals sampled were analyzed together to generate a gene-rich map of 

Eucalyptus based on SFPs anchored to microsatellites. Initially, the methods 

developed by Drost et al. [21] for genotyping SFPs in the highly heterozygous 

genome of poplar were applied to our dataset. Different from that work our 

dataset only involved progeny individuals so that the analysis was used to 

simultaneously identify and genotype SFPs. Working on a per-probe basis, the 

signal intensity of each individual offspring was assigned to either one of two 

distinct clusters using the k-means clustering learning algorithm. Using a chi-

square test, probes showing a 1:1 pseudo-testcross segregation were selected. 

As SFP segregate as dominant markers probes segregating 3:1 were also 

selected. Although theoretically such probes could be segregating 1:2:1 (Figure 

6D) the separation of the signal intensity into three clusters would be 

challenging and could result in higher proportions of genotype miscalls due to 

the expected overlap between signals from these classes. At a 2
1.. =fdχ  < 3.84 (P 



29 
 

> 0.05), 65% (28,304/43,777) of the probes displayed a Mendelian segregation 

ratio, with 12,148 segregating 1:1 and 16,156 segregating 3:1 (Table 1). 

 

Table 1: Number of probes selected after applying the SFP detection and 
mapping pipeline to the genotype dataset of 96 F1 individuals of the E. 
urophylla x E. grandis pedigree. Unigenes derived from a consensus sequence 
involving ESTs from different species are called Contigs, while singletons are 
listed by species. Number of unigenes represented is shown between 
parentheses. 

 

 

The degree of separation between clusters was measured by calculating 

the probability of individuals assigned to one cluster being a member of the 

other cluster through a modified normal deviate zi (see methods). Individuals 

with zi equal to or smaller than 1.96 (P ≥ 0.05) are likely to overlap with the 

other cluster and were assigned as missing data to avoid genotype miscalls. 

Whenever an excessive number of individuals (more than 10%) were 

considered as miscall the probe was discarded. This selection step of the SFP 

detection pipeline is the most effective one as only 5,649 probes, representing 

altogether 4,300 unigenes were selected. A few genes (255) had more than two 

probes selected; an important result if one considers that the selection of fewer 

probes per probeset indicates detection of SFPs rather than GEMs. At this 

stage, the number of detected SFPs segregating 3:1 was slightly greater than 

that segregating 1:1, a pattern that was inverted after assigning these markers 

to linkage groups and stabilized after mapping and ordering them (Table 1). 

1:1 3:1 1:1 3:1 1:1 3:1 1:1 3:1

Contig 22598 6668 8139 1407 1587 570 435 252 271
E. urophylla 2071 567 778 132 134 58 40 20 24
E. grandis 10073 2445 3846 496 735 221 134 98 67
E. globulus 3620 1044 1361 216 230 93 62 34 29
E. pellita 2133 550 835 144 146 66 36 24 12
Mixed species 3282 874 1197 191 231 80 53 29 24

457 4272586 
(2132)

3063 
(2583) 1088 760All 43777 

(15698)
12148 
(7764)

16156 
(10364)

EST class Total Chi squared zi normal deviate Grouped Mapped
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Although ESTs that grouped into contigs are usually referred to be of 

higher quality than those that did not group (singletons), we found only a 

borderline significant difference in the ability of probes derived from these two 

different types of unigenes to reveal SFPs ( 2
1.. =fdχ = 4.94 P = 0.0262) (Table 2). 

Although significant, this result indicates that singleton unigenes are a useful 

source of probes for SFP discovery. 

 

Table 2: Association between the source of probes (contigs vs. singletons) and 
the rate of SFP detection. 

 Contig Singleton Total 
SFP Detected 2994  2655 5649 
SFP Not detected 19604 18524 38128 
Total 22598 21179 43777 

2
1.. =fdχ  = 4.94 P = 0.0262 

 

 

 Finally, to avoid redundant information the 5,649 probes revealing 

putative SFPs (2,586 segregating 1:1 and 3,063 segregating 3:1) were filtered 

to keep only one best SFP per gene for mapping. The selection criteria involved 

three steps (see methods). The first (pick probes with less missing data) 

intrinsically gives priority to probes with individuals well assigned to clusters; the 

second selects probes segregating 3:1 over those segregating 1:1 under the 

rationale that these markers are more informative because they segregate from 

both parents; and, the third step uses the gap calculated between clusters 

mean to minimize genotype miscalls due to overlapping. The resulting 4,300 

selected SPFs, being 1,915 and 2,385 segregating 1:1 and 3:1, respectively, 

were used in the linkage mapping analysis (Table 1). 

 

4.3. Construction of a gene-rich map for Eucalyptus 

 The SFP segregation data resulted in the generation of a genetic linkage 

map comprising 1,064 makers (Figure 2). The majority of these markers (884 
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SFPs) represent unique genes while the remaining 180 markers are 

microsatellites. The microsatellites played an important role to confidently 

assign the SFPs to the expected 11 linkage groups of Eucalyptus formed at a 

minimum LOD of 7.0. A total of 1,848 SFPs grouped at this LOD threshold 

(Table 1) could, in principle, be ordered along the linkage groups. However a 

framework map with high likelihood support was constructed by simulated 

annealing, excluding markers that contributed to unstable marker orders. As 

microarray data is inherently noisy, we opted for map quality rather than 

allocating more genes but increasing the chance of erroneously ordering SFPs. 

 From the total number of SFPs mapped, 457 segregated 1:1 and 427 

segregated 3:1, which received the acronym of BC and F2, respectively. The 

quality of the map is comparable to that generated by other classes of 

molecular markers, with markers evenly distributed throughout the linkage 

group. Except for a few cases on the edge of linkage groups, there were no 

evidences of major clustering or regions lacking genes (Figure 3), with SFPs 

spread equally along the intervals of microsatellites (Figure 2). However, some 

linkage groups had more (e.g. 6 and 8) genes mapped than others (e.g. 7), 

possibly resulting from a general greater abundance of genes on those 

chromosomes, or at least of those expressed in the transcriptome of 

differentiating xylem tissue (Table 3). 

 The SFP/microsatellite map had an average density of 1.2 cM with 

97.5% of the intermarker distances smaller than 5 cM (Figure 4). For only five of 

the 1,053 intervals the distance was greater than 10 cM, with a maximum of 

12.3 cM (Table 3, Figure 4). Even though the number of mapped markers 

increased more than five times when compared to the microsatellite only map, 

the total length of the map did not increase significantly. The total map length 

estimated at 1275 cM is within the expected range for Eucalyptus. The total 

length and intermarker distances for every linkage group built are consistent 

with the global results and no linkage group was either too long of had too 

spread out markers (Table 3). 
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Figure 2: High-density SFP/microsatellite genetic linkage map of E. urophylla x 
E. grandis. Linkage groups 1 to 4 are shown. Microsatellites in black, SFPs 
segregating as F2 (3:1) and pseudo-testcross (1:1) in red and green, 
respectively. Linkage groups are numbered after Brondani et al. [25]. 
(Continued)
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PE_SGTON9532_320_F230.4
CL2476Cntig1_629_BC31.3
CL1896Cntig1_199_F232.6
CL5565Cntig1_268_F235.8
GL_SGTON1618_420_F235.9
CL630Cntig1_790_BC37.0
CL2525Cntig1_779_F238.2
CL1987Cntig1_616_F238.9
embra38841.0
CL4635Cntig1_1052_BC42.7
CL856Cntig1_976_BC43.5
embra14343.6
GR_SGTON5970_338_F245.1
CL6422Cntig1_659_F245.6
CL1593Cntig1_477_BC48.5
CL2292Cntig1_686_F249.9
CL1986Cntig1_646_BC53.0
CL2155Cntig1_1182_BC53.9
embra199056.4
PE_SGTON9508_115_BC56.5
GR_SGTON7699_490_BC58.7
CL2802Cntig1_705_BC59.5
PE_SGTON9700_76_BC61.1
embra97961.4
UR_SGTON12291_494_BC63.2
embra74664.4
CL8501Cntig1_724_F266.4
SP_SGTON10294_46_F267.7
CL96Cntig1_1135_BC69.5
embra04569.6
embra20971.7
embra21472.5
GR_SGTON6216_415_BC74.2
embra20274.6
embra20876.7
GR_SGTON7673_177_BC76.9
embra03778.2
embra00579.0
embra192479.7
embra177081.0
embra16883.4
embra172286.5
GR_SGTON5267_148_F290.0
CL1Cntig108_675_BC90.7
CL5745Cntig1_579_F290.9
GR_SGTON8782_353_BC95.8
CL1160Cntig1_1201_F299.7
SP_SGTON10446_268_BC110.9
embra009111.6
CL2549Cntig1_1127_BC114.5
SP_SGTON10839_67_BC123.6

CL3880Cntig1_381_BC0.0
UR_SGTON11882_334_BC4.5
CL5725Cntig1_592_BC9.5
GL_SGTON1494_419_F211.5
CL4361Cntig1_922_BC14.4
GR_SGTON5917_550_BC14.9
UR_SGTON11727_132_BC16.9
CL751Cntig1_1152_F218.5
embra162418.8
CL1354Cntig1_1197_F219.1
embra164320.0
CL4985Cntig1_530_F222.5
CL1929Cntig1_756_F223.4
CL4903Cntig1_404_F223.5
embra94923.6
embra147426.6
embra18727.1
SP_SGTON10743_171_F2
GL_SGTON7_191_F2
embra2055

28.8

GL_SGTON1430_294_BC30.0
GR_SGTON3420_295_F230.1
embra84431.2
GR_SGTON6613_619_F2
GL_SGTON1184_550_F231.8
embra02832.2
embra153534.8
CL270Cntig1_886_F237.6
GL_SGTON338_191_BC
embra81339.2
embra09441.2
embra62743.5
CL4312Cntig1_438_F243.7
CL239Cntig1_1637_F244.7
embra169045.2
CL7455Cntig1_526_BC45.6
embra19646.6
CL3620Cntig1_891_F248.3
PE_SGTON9069_316_BC48.6
CL4759Cntig1_550_BC50.6
CL4219Cntig1_731_F251.9
GR_SGTON6562_115_BC54.0
CL302Cntig1_993_F254.2
GR_SGTON3227_405_F255.2
eg06256.1
CL2028Cntig1_894_BC56.9
en016
CL1941Cntig1_718_BC57.8
GL_SGTON1021_15_BC58.7
CL1118Cntig1_1011_F259.0
CL4238Cntig1_1077_F259.4
PE_SGTON9177_431_F259.8
GR_SGTON5755_353_F260.8
GR_SGTON5999_425_BC60.9
embra00861.3
GL_SGTON28_233_F261.9
CL2578Cntig1_998_F262.4
SP_SGTON10630_169_F262.5
embra36763.5
CL8280Cntig1_694_F264.0
embra03264.3
embra03164.9
CL1139Cntig1_1125_BC65.6
GR_SGTON5623_407_F266.1
embra95066.6
CL2462Cntig1_1243_BC69.5
GR_SGTON7637_364_F270.0
UR_SGTON11549_275_BC71.1
CL323Cntig1_1179_F271.4
CL4716Cntig1_622_F271.8
CL737Cntig1_1329_BC72.0
SP_SGTON10927_256_F272.6
embra05173.3
embra17374.5
CL648Cntig1_1616_BC75.6
SP_SGTON10703_391_F2
CL537Cntig1_708_F276.4
GL_SGTON320_143_BC77.4
CL8446Cntig1_388_F277.7
embra93880.0
GR_SGTON8053_198_F283.6
embra10683.9
CL3091Cntig1_480_BC85.9
CL5162Cntig1_574_F286.0
embra10586.9
GL_SGTON939_354_BC87.6
GR_SGTON6845_251_F287.9
CL3892Cntig1_646_BC88.1
CL3292Cntig1_801_BC88.9
PE_SGTON9721_544_BC89.1
GL_SGTON143_424_BC89.5
CL1222Cntig1_652_F289.8
GL_SGTON50_134_F290.4
embra64691.5
CL1213Cntig1_517_F292.5
embra17593.0
CL2332Cntig1_487_BC93.3
CL1314Cntig1_1401_F294.5
CL1240Cntig1_1247_F295.4
GR_SGTON5818_207_BC96.7
CL1965Cntig1_827_BC98.2
CL1470Cntig1_618_F298.4
CL7380Cntig1_510_BC98.7
CL2820Cntig1_840_F299.2
CL2239Cntig1_9_F2100.0
CL3251Cntig1_328_F2100.7
CL1717Cntig1_1388_F2102.3
SP_SGTON10402_48_BC103.5
CL2641Cntig1_605_BC104.0
embra1793106.2
CL533Cntig1_644_BC107.8
CL512Cntig1_1921_BC109.1
CL3097Cntig1_529_F2110.3
CL1882Cntig1_1033_F2110.4
embra135111.6
GR_SGTON3549_373_BC112.2
embra290112.7
CL3345Cntig1_580_F2113.0
CL4667Cntig1_439_BC113.9
SP_SGTON10009_308_F2114.7
CL1399Cntig1_565_BC114.9
embra345115.3
CL5621Cntig1_290_F2115.8
CL1708Cntig1_907_BC117.8
embra1039119.9
PE_SGTON9755_170_F2120.1
embra1081120.9
CL3551Cntig1_762_F2121.3
UR_SGTON12429_405_F2121.4
CL2888Cntig1_842_F2121.7
CL3277Cntig1_595_F2122.0
GR_SGTON8022_308_F2
CL1220Cntig1_557_BC123.6
GL_SGTON270_520_F2125.2
CL7732Cntig1_783_BC126.0
GR_SGTON2031_135_BC127.5
CL4988Cntig1_276_F2130.4
GR_SGTON2010_371_BC135.5

CL3481Cntig1_848_BC0.0
CL2466Cntig1_741_BC8.8
CL1528Cntig1_1611_BC12.7
CL1466Cntig1_1162_BC15.1
GR_SGTON7757_571_BC16.7
CL5723Cntig1_375_BC20.3
GR_SGTON7415_479_BC20.4
SP_SGTON11087_515_BC20.8
CL7069Cntig1_261_BC24.1
CL7240Cntig1_526_F224.7
SP_SGTON11118_605_BC26.0
PE_SGTON9653_243_F227.0
GR_SGTON7723_442_F229.5
SP_SGTON10112_49_BC30.9
CL1419Cntig1_675_F232.4
GR_SGTON7477_648_BC
GR_SGTON4124_133_F232.9
CL4412Cntig1_1060_BC33.4
CL8106Cntig1_39_BC34.7
embra34735.3
CL1110Cntig1_1152_BC35.8
CL2486Cntig1_879_BC
CL4257Cntig1_933_BC36.3
CL6960Cntig1_817_F236.7
PE_SGTON9342_451_BC39.5
CL1028Cntig1_710_BC39.9
GR_SGTON8686_307_F2
CL108Cntig1_958_F240.2
GR_SGTON6618_305_F241.9
PE_SGTON9719_133_F243.0
CL703Cntig1_823_F245.7
CL1622Cntig1_1434_F247.7
CL513Cntig1_1168_BC49.1
CL2439Cntig1_635_BC50.3
GR_SGTON1725_30_BC51.8
embra144158.5
embra176160.0
CL4833Cntig1_731_F264.2
embra12866.9
CL1367Cntig1_962_F272.2
embra06974.9
CL338Cntig1_1083_F277.0
embra62379.3
embra14582.0
embra12183.2
eg09183.9
embra00785.3
embra04293.0
embra09894.8
embra75195.7
embra17497.8

PE_SGTON9898_387_BC0.0
CL5858Cntig1_670_BC7.5
CL563Cntig1_2316_F28.3
CL1634Cntig1_1517_BC
SP_SGTON10986_754_BC10.9
GL_SGTON412_63_BC13.3
GR_SGTON5226_367_F215.1
CL6389Cntig1_864_BC16.9
GL_SGTON1024_225_F217.6
CL5929Cntig1_607_BC17.9
UR_SGTON12234_301_F219.3
GR_SGTON3073_421_BC19.9
GR_SGTON3636_210_BC20.2
GR_SGTON5875_198_F223.3
GR_SGTON6793_188_BC23.4
CL370Cntig1_625_F224.1
CL8455Cntig1_480_F225.4
GR_SGTON5632_521_F225.9
CL982Cntig1_1092_F226.1
CL4501Cntig1_705_BC28.6
embra69628.7
SP_SGTON10455_97_F228.9
CL1082Cntig1_584_F229.7
CL5455Cntig1_356_BC30.0
CL3327Cntig1_797_BC30.3
CL4054Cntig1_979_F231.1
UR_SGTON12472_400_F231.8
CL4580Cntig1_681_BC32.0
embra08233.4
CL4698Cntig1_373_BC35.2
CL1667Cntig1_699_F236.7
GR_SGTON4018_260_BC37.1
CL1665Cntig1_689_F238.1
CL5044Cntig1_425_BC40.5
embra92842.8
GL_SGTON893_376_F243.3
CL1521Cntig1_666_BC44.2
UR_SGTON11826_280_F246.5
CL4710Cntig1_415_F247.2
GR_SGTON7245_154_F247.6
CL6298Cntig1_426_BC47.7
CL2018Cntig1_1204_BC50.3
CL5483Cntig1_620_BC50.9
UR_SGTON12062_521_F251.3
CL4745Cntig1_487_F251.9
embra05352.3
CL1868Cntig1_1095_F252.8
PE_SGTON9126_377_BC53.4
GR_SGTON7726_433_BC
PE_SGTON9035_91_BC
PE_SGTON9454_447_BC

53.8

UR_SGTON11811_546_BC54.2
GR_SGTON6907_242_BC54.5
CL2346Cntig1_712_F254.9
embra136255.8
embra00357.1
GR_SGTON7543_346_BC59.6
CL350Cntig1_892_F260.2
CL3054Cntig1_561_BC60.9
GR_SGTON2737_310_BC61.7
GL_SGTON1364_267_F261.8
CL3853Cntig1_575_F262.3
GL_SGTON806_256_F263.9
GR_SGTON8495_548_F264.0
embra66865.8
SP_SGTON10620_553_BC68.6
CL1Cntig155_527_F268.7
CL4476Cntig1_1103_F269.5
CL951Cntig1_1656_BC
CL1690Cntig1_816_F270.0
CL23Cntig1_1486_F270.5
CL1942Cntig1_417_F271.0
embra142771.4
CL6670Cntig1_219_F272.5
CL1Cntig133_1041_BC72.6
CL723Cntig1_1181_F273.1
embra20374.2
GR_SGTON5811_472_BC74.5
CL5453Cntig1_666_BC74.9
GR_SGTON4705_428_F277.0
CL2945Cntig1_312_BC78.7
embra04885.1
CL5598Cntig1_471_BC87.8
embra15788.8
CL7514Cntig1_688_F289.3
CL1338Cntig1_1233_F290.2
CL7392Cntig1_552_BC91.0
GR_SGTON7158_412_BC91.8
CL2074Cntig1_856_BC93.3
CL912Cntig1_541_F294.2
CL1901Cntig1_362_F294.4
CL790Cntig1_1300_F294.9
SP_SGTON11322_193_BC96.2
CL1274Cntig1_1414_F297.2
CL3050Cntig1_544_BC97.6
CL1006Cntig1_981_F298.2
CL1093Cntig1_603_BC98.7
embra67499.6
CL174Cntig1_2659_F2101.4
CL1133Cntig1_687_BC102.1
SP_SGTON10798_69_BC104.3
CL1339Cntig1_669_F2106.2
CL6529Cntig1_357_BC107.0
CL207Cntig1_1420_F2107.6
CL651Cntig1_686_F2110.4
CL508Cntig1_1666_F2111.3
GR_SGTON7014_484_F2112.2
PE_SGTON8963_435_BC112.3
CL1345Cntig1_770_F2113.1
CL438Cntig1_628_F2
GR_SGTON4006_154_F2113.6
SP_SGTON10653_197_F2114.9
PE_SGTON9902_390_F2115.6
UR_SGTON11967_324_F2115.7
CL6503Cntig1_534_F2116.0
CL636Cntig1_578_F2116.4
PE_SGTON9858_176_BC117.3
CL3802Cntig1_639_BC118.1
CL5215Cntig1_747_F2
CL6455Cntig1_577_F2118.5
CL300Cntig1_691_F2118.6
CL628Cntig1_453_F2119.4
GR_SGTON2518_341_BC
GR_SGTON7825_515_BC119.8
GR_SGTON7119_690_BC120.1
PE_SGTON9662_275_BC120.5
GL_SGTON1036_202_BC120.7
CL420Cntig1_1519_BC121.4
UR_SGTON11764_143_F2121.7
CL252Cntig1_1230_F2122.1
CL117Cntig1_388_F2122.4
CL1Cntig171_1404_F2125.3
GL_SGTON1404_297_BC131.4
CL4752Cntig1_430_BC133.8

LG 6

LG 5

LG 7

LG 8
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SP_SGTON10557_258_BC0.0
SP_SGTON10673_206_BC3.2
CL3844Cntig1_889_F25.2
GR_SGTON7912_587_F25.9
CL3641Cntig1_962_BC9.3
SP_SGTON11072_639_BC10.8
CL1063Cntig1_407_BC13.8
CL5222Cntig1_391_BC14.6
CL2850Cntig1_875_BC15.2
SP_SGTON10897_421_BC
CL1207Cntig1_1302_BC17.8
embra35718.5
embra201420.4
embra149225.4
CL329Cntig1_797_F228.2
GL_SGTON140_372_F230.2
embra192831.9
GR_SGTON3063_465_BC34.3
GR_SGTON3155_281_F235.3
CL567Cntig1_809_BC37.7
UR_SGTON12097_309_BC38.3
GR_SGTON6895_149_BC38.7
GL_SGTON370_308_BC39.6
GR_SGTON6350_298_BC42.9
GR_SGTON7426_361_BC44.3
GL_SGTON170_376_BC45.4
GL_SGTON1081_299_F246.2
CL1090Cntig1_725_BC47.5
embra01848.6
es14049.9
GR_SGTON2615_421_BC50.0
embra62951.2
GR_SGTON7012_161_F252.0
embra197753.2
CL4450Cntig1_886_BC53.6
CL709Cntig1_935_F253.9
CL3175Cntig1_544_F254.2
SP_SGTON10813_269_F2
embra185154.5
embra94155.4
GR_SGTON2375_350_BC56.3
GL_SGTON237_320_BC57.2
CL1602Cntig1_779_BC57.5
CL6760Cntig1_439_F258.9
CL1725Cntig1_1164_F259.1
SP_SGTON11053_531_F259.6
CL558Cntig1_550_F259.7
UR_SGTON11883_210_F260.1
CL1122Cntig1_1102_F2
CL1308Cntig1_843_F260.4
UR_SGTON11531_280_F262.1
UR_SGTON12073_417_F262.2
CL2613Cntig1_1251_F262.7
GL_SGTON1114_184_F262.8
CL917Cntig1_1239_BC63.7
CL716Cntig1_750_BC64.8
CL1Cntig190_402_F265.2
CL1Cntig141_852_F265.4
CL2197Cntig1_450_F265.8
GR_SGTON4197_314_F266.4
CL1Cntig142_715_F2
PE_SGTON9314_524_F266.6
embra95467.0
PE_SGTON9793_171_F267.9
embra691
UR_SGTON11638_314_BC68.5
CL5801Cntig1_370_F270.0
PE_SGTON8974_386_BC70.5
CL727Cntig1_992_BC71.9
CL3252Cntig1_736_F272.4
CL4418Cntig1_534_F273.1
CL8323Cntig1_218_F2
PE_SGTON9365_596_F2
CL2416Cntig1_1024_F2
CL263Cntig1_1536_F2

73.5

embra21073.6
CL2870Cntig1_598_BC
SP_SGTON11458_348_BC
GR_SGTON7690_450_BC

73.7

GR_SGTON3983_227_BC73.8
CL5300Cntig1_650_F274.2
embra157874.7
embra20475.3
CL4280Cntig1_522_BC75.7
CL3800Cntig1_190_BC76.5
embra31077.2
CL4780Cntig1_607_F277.9
CL752Cntig1_965_F279.0
CL8002Cntig1_462_BC84.2
CL3022Cntig1_700_BC84.7
GR_SGTON4607_244_F288.1

GR_SGTON5928_79_BC0.0
GR_SGTON3753_406_F24.2
CL4187Cntig1_681_BC4.4
CL367Cntig1_784_BC11.4
CL5643Cntig1_507_BC14.0
embra92215.4
CL113Cntig1_1440_F217.4
CL804Cntig1_356_F217.5
CL181Cntig1_804_BC17.9
GR_SGTON7279_491_F218.3
embra03318.9
GR_SGTON6577_670_BC20.0
CL4975Cntig1_431_F220.7
CL3306Cntig1_647_BC22.5
GR_SGTON6358_460_F222.7
embra91724.8
CL280Cntig1_646_F224.9
CL852Cntig1_745_F225.8
CL1775Cntig1_622_F226.3
CL1393Cntig1_1298_F227.9
embra01028.3
CL1663Cntig1_455_F231.7
GR_SGTON8807_220_F232.1
embra04032.4
GL_SGTON1458_412_F2
CL803Cntig1_1224_F234.2
CL8486Cntig1_112_BC35.1
embra142836.6
CL1436Cntig1_843_F238.4
embra06139.4
CL233Cntig1_630_F242.0
GR_SGTON2351_402_BC
GR_SGTON6352_314_BC
GR_SGTON5559_460_BC

44.9

CL6370Cntig1_459_BC45.4
CL1669Cntig1_1022_BC45.7
CL2867Cntig1_1405_F246.3
GR_SGTON7398_352_BC47.6
GR_SGTON2079_244_BC48.5
embra15351.0
GR_SGTON3691_126_BC54.5
CL2771Cntig1_659_BC55.6
CL1113Cntig1_1165_BC58.1
CL594Cntig1_835_BC59.8
GR_SGTON4960_348_BC
embra147060.6
CL2109Cntig1_852_BC61.7
embra03862.1
CL2042Cntig1_1257_F262.4
embra73164.2
GR_SGTON2077_445_BC64.8
GR_SGTON7922_686_BC68.5
embra94369.1
CL2408Cntig1_1205_BC69.4
CL7552Cntig1_417_BC69.6
CL2790Cntig1_436_BC70.4
CL31Cntig1_485_BC71.7
CL5398Cntig1_78_BC72.5
CL4360Cntig1_362_BC74.4
CL4735Cntig1_978_BC75.1
CL7667Cntig1_557_BC75.7
CL6088Cntig1_375_BC
CL150Cntig1_285_BC
GR_SGTON8293_400_BC

76.5

embra02276.8
SP_SGTON10135_304_BC
CL3227Cntig1_667_BC77.4
PE_SGTON9379_486_BC77.5
CL1922Cntig1_424_BC78.1
CL430Cntig1_665_BC80.6
UR_SGTON11743_389_F280.7
CL2492Cntig1_563_F281.4
embra182982.2
GR_SGTON3736_293_BC84.4
embra12785.6
UR_SGTON11757_285_F286.9
CL4613Cntig1_467_F287.9
CL858Cntig1_865_F288.4
embra15589.5
CL215Cntig1_837_BC89.7
CL1704Cntig1_608_BC90.5
CL8252Cntig1_666_BC91.4
GR_SGTON2314_366_BC93.2
CL846Cntig1_596_F294.2
CL4949Cntig1_669_BC96.4
PE_SGTON8924_188_BC98.4
CL1182Cntig1_803_BC107.9

UR_SGTON11884_307_BC0.0
GR_SGTON7255_391_BC11.5
CL8477Cntig1_682_F214.2
CL1909Cntig1_1146_BC14.8
GR_SGTON7556_173_BC16.0
CL8101Cntig1_461_BC18.8
CL3083Cntig1_693_F219.7
CL3122Cntig1_1288_BC20.4
CL1233Cntig1_1261_BC20.6
embra08721.3
CL1140Cntig1_487_F222.3
GR_SGTON2647_480_BC22.7
GR_SGTON3204_349_BC
SP_SGTON10785_133_BC23.5
CL1315Cntig1_1060_F224.3
GL_SGTON1065_601_F224.9
CL524Cntig1_1068_BC25.5
CL4055Cntig1_523_F2
CL2489Cntig1_871_F226.3
CL4424Cntig1_896_BC26.4
CL2389Cntig1_838_BC
GL_SGTON673_183_BC27.6
CL244Cntig1_630_BC28.3
CL1564Cntig1_1645_BC29.0
GL_SGTON1541_193_BC30.2
embra187030.6
CL3162Cntig1_1186_F232.9
GL_SGTON710_233_F233.0
GR_SGTON7340_180_BC34.7
UR_SGTON11770_521_BC35.6
CL98Cntig1_361_BC37.8
CL886Cntig1_1545_F238.0
CL7512Cntig1_668_F238.4
CL3193Cntig1_410_BC41.1
CL708Cntig1_1017_F241.6
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Figure 3: Frequency distribution of SFPs along the extension of the eleven 
linkage groups indicating variable marker clustering patterns. 
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Linkage Group SSR Genes Total
Length 
(cM)

Intermarker distance 
(cM)

Mean
Std 

Deviation
LG1 11 75 86 102 1.20 1.25
LG2 17 85 102 140 1.38 1.55
LG3 12 95 107 134 1.26 1.63
LG4 12 59 71 103 1.48 1.59
LG5 23 61 84 124 1.49 1.76
LG6 34 104 138 136 0.99 0.97
LG7 14 37 51 98 1.96 1.89
LG8 12 122 134 134 1.01 1.16
LG9 16 75 91 88 0.98 1.06
LG10 16 71 87 108 1.25 1.45
LG11 13 100 113 110 0.98 1.55
Total markers mapped 180 884 1064 1275 1.21 1.44

Table 3: Descriptive statistics for the 11 linkage groups of the 
SFP/microsatellite map. 

 

 

 

 

 

 

 

 

 

 

Although some linkage groups had more microsatellites than others, this 

apparently did not influence the amount of SFPs mapped. For example, linkage 

group 7 has 14 microsatellites and only 37 genes were assigned to this group; 

whereas linkage group 8, which has 12 microsatellites, was complemented with 

SFPs for 122 genes (Table 3). This lack of pattern is consistent across the 

whole map, suggesting that SFPs are behaving independently from the 

microsatellites and can in fact contribute to map saturation. 

 To test for the relative contribution that each class of SFP (1:1 and 3:1) 

contributed to the quality of the final map, a map involving only microsatellites 

and SFPs segregating 1:1 was built. The same was done with SFPs 

segregating 3:1. The results indicated that using only SFPs segregating 1:1 

severely decreased overall map quality, as illustrated by the expansion of total 

map length (Table 4). On the other hand, mapping only SFPs segregating 3:1 

did not result in a reduction of map quality, based on the generally used 

premise that a shorter map is the most likely one. For a similar number of 

markers, the total map length was 1,845 cM for the former case, 1,130 cM for 

the later situation and 1,275 cM when both kinds of SFPs were used. Thus, 
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employing an experimental design that allows for the detection of SFPs 

segregating 3:1 seems to be the best one not only as it allows mapping a larger 

number of genes but also because the final map quality is substantially 

increased. 

 

 

Figure 4: Frequency histogram showing the distribution of intervals between 
two markers for increasing intermarker distances. 
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Table 4: Contribution of SFPs segregating 3:1 to map quality. Number of 
markers mapped and final linkage group length for each linkage group are 
shown when (i) mapping microsatellites plus SFPs segregating 1:1 (Only 1:1), 
(ii) microsatellites plus SFPs segregating 3:1 (Only 3:1) and (iii) microsatellites 
plus SFPs segregating for both patterns (Both). 

# markers Length (cM) # markers Length (cM) # markers Length (cM)
LG 1 45 146 66 92 86 102
LG 2 73 168 70 136 102 140
LG 3 78 208 44 87 107 134
LG 4 59 151 40 67 71 103
LG 5 59 244 63 122 84 124
LG 6 87 197 98 125 138 136
LG 7 39 98 42 109 51 98
LG 8 84 149 81 116 134 134
LG 9 66 138 61 87 91 88
LG 10 73 182 48 88 87 108
LG 11 75 164 66 101 113 110
Total 738 1845 679 1130 1064 1275

Only 1:1 Only 3:1 Both
Linkage Group

 

 

 

4.4. SFP identification using mixed-model analysis of variance 

 Next, we were interested to know whether it would be possible to recover 

the mapped SFPs by doing a detection analysis on the data from the screening 

experiment where only the 28 biologically replicated individuals were used. 

Wolfinger et al. [50] and Rostoks et al. [16] previously proposed that fitting 

microarray data to a mixed-model analysis of variance is an effective way to 

separate the sources of variation and test the significance of these effects, 

identifying differentially expressed genes and putative SFPs, respectively. We 

expanded this principle and hypothesized that the same analysis could be used 

on our progeny data. 

 The normalized signal intensity for the 20,726 genes in 56 hybridizations 

(28 individuals) were first fit to a broad mixed-model intended to correct for 

global sources of variation not compensated by only quantile-normalizing the 

data. Subsequently, one analysis of variance was performed for each gene to 

identify those with significant Genotype x Probe interaction (GP) effect (see 
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methods). Significance of this source of variation would indicate genes where 

the signal intensity of one (or more) probe(s) deviates from the probeset’s mean 

in a genotype dependent fashion, which is exactly the definition of a SFP. 

However, keep in mind that this analysis does not determine which probe of the 

probeset is behaving as an SFP. After correcting the significance threshold of 

the F tests for multiple testing, 4,648 genes showed significant GP effect at a 

false discovery rate < 0.005 (P < 0.0022), represented by a total of 25,600 

probes. 

This selection using ANOVA recovered 87% (1,603) of the genes that 

were linkage grouped when the full dataset from the 96 individuals was used 

(Figure 5A). When considering only genes that were represented by probes 

ultimately mapped, a fewer proportion was left aside and 811 (92%) genes were 

common to both selections (Figure 5B). These results indicate that using a 

mixed-model ANOVA on microarray data is a valid approach to identify genes 

with the source of variation of interest significant, even when a complex progeny 

dataset is being used. 

As ANOVA does not determine which probe of the probeset is the 

putative SFP, we searched within each ANOVA-selected probeset for candidate 

SFPs applying the k-means clustering previously described to assign the 

normalized data of the 28 individuals into two distinct clusters. The chi square 

analysis of segregation and the modified normal deviate (zi) were also 

calculated to distinguish well separated clusters with 1:1 and 3:1 proportions 

from non-informative probes. 

The set of probes that passed this selection pipeline and were selected 

reduced to 10,127, representing 4,251 genes. However, as indicated on Figure 

5C-D, the majority of the genes that were previously linkage grouped or 

mapped were still among these 4,251 genes. For genes that were linkage 

grouped, 85% (1564 genes) were still detected (Figure 5C) and 90% (797 

genes) continued to be selected considering only those that were ultimately 

mapped (Figure 5D). 
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Figure 5: Venn diagrams comparing efficiency of identifying SFPs using mixed-
model ANOVA on dataset from 28 individuals. A) Genes with significant GP 
effect compared to linkage grouped genes from the reference map. B) Genes 
with significant GP effect compared to mapped genes from the reference map. 
C) Genes that were still selected after further within gene selection compared to 
linkage grouped genes from the reference map. D) Genes that were still 
selected after further within gene selection compared to mapped genes from the 
reference map. Values between parentheses refer to the percentage of the 
genes linkage grouped or mapped that were common between analyses. 

 

Assuming that probes which were assigned to linkage groups after our 

analysis involving 96 individuals are the real SFPs, the number of false 

positives detected by ANOVA was relatively low (5,917 probes in 2,687 genes). 

Those probes probably represent spurious segregation that were later removed 

when the number of individuals increased from 28 to 96. At any rate, it is 

noticeable that this approach confidentially retrieved the information generated 

using a much larger number of individuals (28 versus 96) and can be 

confidentially used during the screening step. 

 

4.5. Number of probes per probeset 

 During probe design, an average of five unique probes were designed for 

every unigene on the array, a number that was chosen considering the amount 

of genes available and the limited funds available for synthesizing the high-
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density oligonucleotide array. Nevertheless, because it was not known how 

many probes would be necessary to have at least one able to discover an SFP 

into the gene, for a subset of 1,308 genes, corresponding to 6.3% 

(1,308/20726) of the available unigene set, a probeset with a total of 10 probes 

was designed (Additional file 2). 

 Table 5 compares the relative efficiency of SFP discovery when five or 

10 probes are used per probeset. A total of 4.6% of the genes with five probes 

designed had at least one SFP discovered and ultimately mapped on the 

reference map. In contrast, when 10 probes were used for the SFP screening 

and discovery experiment, the efficiency was almost doubled, increasing to 

7.9%. A chi-squared test of homogeneity confirmed that this difference is highly 

significant ( 00001.0;282
1.. <== Pfdχ ) clearly indicating that using more probes per 

unigene does result in a significantly increased probability of discovering a 

segregating and mappable SFP and ultimately positioning the gene on the 

linkage map. 

 

Table 5: Association between the number of probes screened for a gene (N) 
and the number of genes ultimately mapped. 

 

 

 

 
The percentage of genes mapped when N= 5 and 10 is shown in parenthesis. 

 

 

Even though we had 2,868 other genes with a variable number between 

one and four probes designed (Additional file 2), we did not include them in the 

analysis because this number of probes was not intentionally designed. Rather, 

they ended up having a smaller number of probes selected per probeset 

because the remaining probes were not considered high quality according to 

N      
Class 

15787 1205 16992
762 (4.6%) 103 (7.9%) 865

16549 1308

5 10

Not mapped
Mapped
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Agilent’s algorithm. At any rate, out of the 884 genes mapped, only 19 had less 

than five probes designed per probeset, further suggesting that screening a 

larger number of probes is probably a key requirement to efficiently discover an 

SFP for a particular gene and thus being able to map it. 

3
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5. DISCUSSION 

 

 We report that microarray-based detection of SFPs is an effective way 

for confidently mapping a large number of genes in organisms with 

unsequenced genomes. The analyses were done on a mapping population 

derived from an interespecific cross between two elite genotypes of Eucalyptus 

urophylla and Eucalyptus grandis. Eucalypts, as most of the other economical 

and ecological important species, are highly heterozygous as a consequence of 

a mixed mating system and the genome has not been fully sequenced yet. To 

overcome the lack of genome information, custom oligonucleotide arrays were 

designed from a now relatively small EST collection derived from different 

Eucalyptus species and tissue types. Currently, with the availability of next 

generation sequencing technologies, much larger EST collections can be 

generated at relatively reduced costs this providing a quick way of generating 

the unigene set necessary for probe design [63]. Short 25-mer probes were 

designed to maximize the detection of sequence polymorphisms in the form of 

SFPs, because transcript hybridization is more likely to be affected by single 

nucleotide polymorphisms as the probes are shorter. It is worth pointing out that 

the genotypes used in the present study were not among those sequenced to 

assemble the EST unigenes, which although on one side it increases the 

complexity of the probes designed, on the other provides generality that makes 

the unigene collection more widely applicable. 

 This SFP mapping study was carried out in an F1 mapping population 

where up to four alleles might be segregating in the progeny. Furthermore SFPs 

display a dominant pattern of expression so that homozygous and heterozygous 
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genotypes cannot be easily discriminated. As a result of this more complex 

background, SFPs might be polymorphic between the parents but do not 

segregate in the progeny and vice-versa, be monomorphic between the parents 

but segregate in a 3:1 ration in the progeny A simple solution to that is to 

employ a pseudo-testcross marker screening step to optimize the identification 

of informative SFPs analyzing progeny individuals rather than parents. This 

approach originally described by Grattapaglia and Sederoff (1994) has been 

widely used for selecting and mapping several classes of dominant markers 

such as RAPD and AFLP in hundreds of linkage maps published to date for 

outcrossing species. 

Figure 6A-B represents the experimental design used to date for SPF 

detection and mapping , which involves the identification of SPFs based solely 

on the parental data [12-14, 16-22, 54, 55]. This approach makes sense for 

inbred species as SFPs detected between the homozygous parents will 

segregate in the F2 or RIL population used for mapping. For simplicity, we 

assume that there is no differential expression between the parents or allele-

specific expression, that only one probe per probeset shows hybridization 

differences (probe 4) and that the unigene allele always matches the dominant 

segregating allele in the pedigree. Parental identification would always be 

successful when genotyping classical mapping populations such as RILs, but it 

does not apply to outcrossing species because such SFPs would not segregate 

in the progeny (Figure 6A). Even if segregation does occur (Figure 6B), 

heterozygous individuals would still have one allele matching the probe. 

Therefore, the signal intensity of the heterozygous individuals (B) would be, 

theoretically, two times less than that of the homozygous (A), which in a Log2 

transformed data represents a single unit change (e.g 100log200log 22 − ). 

As a consequence genotyping SFPs segregating 1:1 in outcrossing 

species is more difficult as there is a bigger overlap between the two groups of 

individuals, especially when the inherent background noise of the microarray 

data is taken into account (Figure 6C), and other patterns of segregation are 

discarded [21]. On the other hand, analyzing progeny data, it is possible to 

successfully identify and genotype probes that show alleles segregating 3:1 in 
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the progeny with a much lower chance of overlapping between clustering 

classes (Figure 6D-E). 

The examples given in Figure 6, however, are simplified and require 

assumptions that are quite unrealistic for Eucalyptus and it was even difficult to 

find experimental data to exemplify the diagrams. Variations in the expression 

level between individuals might make some of these polymorphisms disappear 

while others would have a greater gap between classes, especially for the 

parental data. For example, imagine if the genitors on Figure 6B had differential 

expression. On the other hand, situations where the probe allele does not follow 

the assumption (i.e. the unigene sequence does not match the dominant 

segregating allele), the polymorphisms detected behave differentially, creating 

1:1 patterns with well separated classes and cases where the four distinct 

alleles will be detected as 1:1. For example, supposing the SNP on Figure 6D is 

a T instead of the G, the progeny would segregate in a distinguishable 1:1 

pattern. Nevertheless, no matter what combinatorial changes one makes to 

these sources of polymorphisms, they will always result in patterns of 

segregation that can be converted to dominant 1:1 and 3:1 segregations in the 

progeny. Finally, in many cases multiple SFPs were detected per probeset. 

All these results together might influence SFP detection depending on 

the statistical method used. The clustering method, yet relatively simple, 

efficiently performed this task and a relatively low level of possible clustering 

errors were visually observed throughout the experiment, with most of these 

errors occurring for probes segregating 1:1 (data not shown). If parental 

genotype data were available, maybe it could be used to incorporate a 

Bayesian probability for each progeny belonging to either parental signal range, 

similarly to what was recently proposed by Wang et al. [20], and a posteriori 

probability of an individual being inappropriately assigned to one cluster could 

be used to reduce genotyping miscalls. Probes segregating 3:1 could take 

advantage of this improvement to separate the classes in a 1:2:1 co-dominant 

segregation. 
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Figure 6: SFP identification in the mapping population. A) Hypothetical example 
to show situations where the  SFP discovery design used for pedigrees derived 
from inbred lines  fails in identifying polymorphisms in outcrossing species. B) 
Example of a probe segregating 1:1 in the progeny with some degree of 
overlapping between classes. C) Experimental data exemplifying diagram B. D) 
Hypothetical example demonstrating advantage of screening for SFPs using 
progeny individuals rather than parents. E) Experimental data exemplifying 
diagram D. Polymorphism is always present on probe 4. 
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Applying a slightly different analysis at the probeset level, Das et al. [55] 

demonstrated that cross-species microarrays can be used to detect SFPs by 

using Affymetrix soybean genome array on cowpea. However, they also 

showed that from the 37,500 probesets of the Affy chip, only 7,000 could be 

used to potentially reveal SFPs in cowpea due to expression and polymorphism 

differences between both species. Although Eucalyptus species are genetically 

closer to each other, our findings agree with those found with the soybean-

cowpea. When we evaluated the background expression level based on the 

signal intensity of negative control probes, the influence of designing probes 

from unigene sets derived from complex EST libraries was noticeable. For the 

genes with probes that had a signal intensity above this minimum background, 

only 22% (3,622/16,163) had all probes included in this group. The other 

probesets showed one or more probes with a totally low offscale signal, which 

we postulate as being a consequence of none of the parents’ transcript allele 

matching the unigene sequence used to design the probe. 

These results are of importance if one is willing to use the microarray 

data to estimate gene expression levels for other downstream analysis such as 

expression QTLs or to find differentially expressed genes. Kirst et al. [44] 

demonstrated the bias incorporated to gene expression estimates when highly 

genetic diverse maize inbred lines are hybridized to the array. They also 

showed that excluding probes detected as putative SFPs was not sufficient to 

get completely unbiased data. Therefore, in addition to the high degree of 

polymorphism detected in outcrossing species, the estimates of gene 

expression from EST-developed microarrays would be somehow biased and 

the dual application of the microarray data has to be used with caution. Drost et 

al. [21], also working on a highly polymorphic organism, used longer 60-mer 

probes to mitigate this potential problem, but at a possible cost of a reduced 

ability to discover SFPs and, consequently mapping genes. 

Perhaps an optimum strategy for highly polymorphic outcrossing species, 

yet to be tested, would be to include both short and long probes on the array for 

simultaneous genotyping and gene expression analysis. Although there has not 

been a fully comprehensive genome-wide survey of the number of SNPs in 

coding regions of Eucalyptus, Novaes et al. [63] estimated one SNP for every 
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192 bp on average in high-quality unigenes assembled after 454-based EST 

sequencing. As the authors discuss, the sequencing depth obtained does not 

allowed all E. grandis haplotypes sampled to be sequenced and their criteria to 

call a SNP was very stringent, probably excluding less frequent alleles and 

intentionally not including indels and variants involving more than one 

nucleotide. A possibly more realistic observation was reported by Poke et al. 

[64] for E. globulus. Yet sequencing only two lignin genes, they found 1 SNP for 

every 48 pb within CCR sequence and 1 SNP for every 147 pb in CAD2 

sequence. Therefore, as avoiding sequence polymorphism that affect 

hybridization will probably be impossible when designinig probes for Eucalyptus 

microarray studies, using longer probes would at least contribute by increasing 

the length of continuous perfect match, which has been proved to reduce the 

bias caused by SNPs [65]. 

 

Differently from any other SFP study previously reported, we show that 

the application of the pseudo-testcross screening strategy to simultaneously 

identify and genotype SFP using a progeny dataset, rather than first identifying 

SFPs using only the parents, was successful in detecting the two patterns of 

dominant segregation possible. While using only the two parents for SFP 

screening is obviously less expensive, the number of genes mapped and the 

overall map quality was substantially increased by screening using a progeny 

dataset that allowed the discovery of markers segregating 3:1 that would not be 

selected if only the parents would have been used (Table 4). There are two 

possible explanations for this observation. Firstly, for probes segregating 3:1 

fewer individuals would likely not be correctly assigned to the two clusters and, 

thus, the chance of genotype miscalling is minimized. A high rate of miscalls 

generates false recombinants complicating map construction. Secondly, this 

class of SFPs segregating from both parents significantly improves the process 

of linkage phase estimation adding quality to the final map. This is possibly due 

to the fact that dominant SFP markers, even though segregating in a less 

informative 3:1 configuration, as they can occur as tightly linked in repulsion 

phase provide the same information content as a single co-dominant marker as 

originally proposed by Williams et al. [66] and later formalized by Plomion et al. 
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[67]. As a consequence, our final map had total length within that reported for 

Eucalyptus developed using other traditional molecular markers [5, 23, 25]. 

 

Although the clustering method clearly makes no attempt to differentiate 

SFP from GEM, our results suggest that most of the polymorphisms of signal 

intensity detected are likely revealing SFPs. Wang et al. [20] suggested that 

detecting few significant probes per probeset is an indication that the method 

outperforms in detecting SFPs and, even though this measure is confused with 

the effect of the original sequence wherefore the probes were derived, a very 

small percentage, only 66 genes out of the 884 mapped, had more than two 

probes declared as putative SFPs. Also, among genes for which several probes 

were detected as SFPs, different segregation patterns were identified (i.e. 1:1 

and 3:1), which contradicts the definition of GEMs. Furthermore, even if the 

same segregation pattern was identified, correlation between the probes was 

sometimes different than 1 (considering the assigned cluster as the main 

variable), suggesting that the source of polymorphism affecting such probes are 

different (data not shown). Finally, similar to our observations, West el al. [18] 

noticed that using the RIL distribution to detect GEMs resulted in fewer markers 

than using parental distributions, a result they attributed to the effects that 

influence gene expression patterns in segregating populations, such as 

transgressive segregation, epistasis and genotype x environment interactions. 

 

The relative position and ordering of the genes mapped by the SFPs 

could not be fully confirmed at the physical sequence level as a reference 

genome is not yet available for Eucalyptus. However, a preliminary analysis on 

linkage group 6, the most saturated one, against the scaffolds assembled from 

the 4X genome sequence, indicates that SFPs position is accurate as those that 

co-localized on the genetic map were located on the same scaffold. Also, the 

largest scaffold (2 Mbp) assembled on this linkage group suggests preliminary 

agreement of the genetic position of SFPs with their physical position within the 

scaffold (data not shown). Previous SPF mapping studies have consistently 

reported that the genetic position and order of such markers follow the order 
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expected from the annotation of the sequenced genome, with only few 

exceptions [18, 19, 21]. 

A major problem associated with using SFPs for gene mapping is that 

only those transcripts present in the tissue analyzed can be screened and 

ultimately mapped. We hybridized cRNA from differentiating xylem with a two-

fold objective. First and most important was to reduce the genome complexity to 

allow the generation of data on the microarray by using only the low copy, high 

complexity transcribed portions of the genome. Secondly to focus the 

experiment on expressed genome regions so as to enrich the existing genetic 

maps with genes that coud be then proposed as positional candidates for QTLs. 

Given the results of this study the maximization of the number of genes mapped 

could be achieved using more than one segregating family and tissue type for 

SFP discovery. 

For practical applications our findings show that screening for SFPs 

using a relatively small subset of the mapping population allows the discovery of 

a large number of high quality mappable SFPs. Applying mixed-model analysis 

of variance to this dataset it was possible to retrieve most of the mapped SFPs. 

Since this analysis isolates the effects of gene expression, we first hypothesized 

that the few genes not selected by this method could have been GEMs. 

Nevertheless, there was no direct correlation between these genes and having 

a larger number of probes designed per probeset. On the other hand, in the 73 

mapped but undetected genes significantly more BC markers (57) than F2 ones 

(16) ( 00001.0;22
1.. <== Pfdχ ) were observed, which also displayed overlapping 

clusters with relatively small gaps between clusters’ mean ( 7.0;67.1 == σμ ), 

probably being this the reason for not being detected via ANOVA. 

Hybridizing an even smaller number of individuals it may be possible to 

detect genes with putative SFPs using ANOVA, but as the number of individuals 

is decreased, reduced is the ability to identify probes segregating 3:1. If we had 

performed this analysis before designing the genotyping array, selection using 

only ANOVA would still have kept 25,600 probes for the full scale segregation 

experiment. Applying subsequent analysis within the ANOVA-selected 

probesets barely lost power in detecting genes that mapped and the number of 
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probes that would have been kept lowered to 10,127. Therefore, spending a 

little more to initially hybridize more individuals will certainly pay off by enriching 

a smaller microarray format with probes with a much higher probability of 

detecting high quality SFPs with mendelian segregation that will ultimately allow 

mapping their corresponding genes. 

Our results also suggest that increasing the number of screened probes 

per gene significantly increases the probability of discovering SFP and 

ultimately the possibility of mapping genes. Assuming that this increment would 

be linear and experiment-wide, if we had designed the array with ten probes for 

the 17,857 (16,549+1308) genes where they were available, theoretically this 

would have resulted in 1,411 (7.9% of 17,857) genes mapped. This represents 

an increment of almost 60% over the 884 genes we mapped. In addition to the 

demonstration that the best candidate probes can be immediately detected 

using ANOVA, starting with more probes is an approach that will ultimately 

result in a reduction of costs per datapoint. 

 

The reduction of costs and the availability of increasingly higher 

microarray density formats facilitate the use of a larger number of probes. 

Furthermore generating an EST resource from which to derive these probes is 

currently a relatively inexpensive and fast process for any species. For 

example, Novaes et al. [63] used 454 pyrosequencing technology to generate a 

much larger unigene set (71,384) than what we used and showed that such 

approach even outperforms Sanger sequencing on sampling genes, although 

the contig length was considerable smaller. At an approximate cost of $10,000 

USD per run for the GS-FLX Titanium chemistry, which produces longer reads 

of 400-600 bp, EST resources are no longer a limitation even for complex 

genomes. 

For our experimental design the cost of array purchase, labeling, 

hybridization and data collection was approximately $300 USD per genotype. It 

has to be considered, however, that sampling more genes and increasing probe 

density will require some compensation in terms of array size. The recently 

released 3G Agilent microarray supports configurations up to 1M and more 
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adequate formats of 2 x 400K and 4 x 180K will probably be available for 

custom expression designs later this year or first next year at an estimate cost 

of $1,030 and $1,200 USD, respectively (Matt Angel, Agilent sales 

representative, personal communication). Given such variety of formats a three-

step experimental design can be imagined where, (i) genitors plus very few 

individuals could be initially hybridized only to exclude clearly not expressed 

probesets; (ii) followed by an expanded screening with more individuals that will 

allow selection of putative probes by ANOVA and clustering analyses; and, (iii) 

a final step where these probes will be included in a much smaller format to 

genotype the other selected individuals of the mapping population. 

Although microarray based markers have been mostly employed in 

inbred, model organisms for which genome information is generally available, 

our study shows that a combination of a relatively limited EST resource together 

with SFP discovery and mapping on oligonucleotide arrays is a powerful 

approach to quickly localize several hundred or even thousands of genes to a 

reference map. Finally, the large number of genes mapped by SFP detection 

provide markers for several different applications. Such a gene-rich map 

represents a very useful resource for gene discovery when used in combination 

with QTL and association mapping and should be especially valuable for 

uncharacterized genomes of plant and animal species. In a molecular breeding 

scenario, for example, the co-localization of the genes mapped by SFPs with 

previously detected QTLs could result in positional candidate genes to have 

SNPs designed and genotyped for association genetics studies. Conversely, 

genome wide selection has been proposed to assist breeding programs for 

multiple complex quantitative traits [30] and the SFP mapping information could 

be used for increasing the relative weight of genomic regions in predictive 

models. 
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6. CONCLUSIONS 

 

 The results of our SFP experiment on Eucalyptus may be summarized in 

the following main conclusions: 

i) The use of inexpensive EST resources has shown to be a valid 

source of sequence information to design oligonucleotide arrays for 

large-scale gene mapping via SFP in unsequenced genomes; 

ii) The pseudo-testcross strategy using a subset of the mapping 

population allowed dominant SFPs to be detected segregating both 

1:1 and 3:1; 

iii) Simultaneous detection and genotyping using clustering analysis of a 

subset of the mapping population selected by Selective Mapping 

approach was sufficient to map SFPs in our genetic pedigree; 

iv) A highly saturated genetic map was constructed positioning 884 

unique genes from SFP markers; 

v) Inclusion of SFPs segregating 3:1 has been demonstrated to 

substantially increase overall final map quality; 

vi) Selection of putative SFP on a screening array by mixed-model 

ANOVA associated to clustering analysis within probeset recovered 

most of the mapped genes and are indicated for such purpose; 

vii) And, increasing the number of probes sampling the unigene 

sequence resulted in more genes being ultimately mapped via SFP 

detection. 
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8. ADDITIONAL FILES 

 

Additional file 1: Microsatellite panel used for parentage and identity 
confirmation of the offspring from the U15 x G38 cross. f and r represents 
forward and reverse primers, respectively. 

 

 

 

 

 

Additional file 2: Summary of the number of probes selected for the unigenes 
represented in the microarray used for polymorphic probe screening. 

 

 

 

 

 

 

 

 

U15 G38
f: AAAGCGTTACGTGCGACTCT
r: GGTACAGAAGAGGGCGTCAA
f: CTCCGTCTTCTCCATCCGTG
r: GGCATAGCAAGTGATCAAGC
f: CCAGGGAAAACAATTCAAGC
r: GAGCGACAAACCCAAGTTTC
f: ATACAATGATTTGAAAGGGG
r: GAGTTGTTTGTTTTGTCGAA
f: TGATAGAGAGGTACATGGAGC
r: TAAGACTCATGTGAACTAATTGG
f: GCCAGTAGTGTTTTCCTCGG
r: TTGCCCTCCTCATGGTATTCEMBRA 746 HEX 173/195 177/203

Primer sequence

EMBRA 4 NED 88/102 80/94

122/146124/126HEXEMBRA 101

EMBRA 310 6-FAM 280/292 282/288

277/279283/285NEDEg 096

Expected aleles (bp)FluorescenceSSR Loci

EMBRA 646 6-FAM 142/150 146/148

1 721 3
2 722 3
3 698 3
4 727 4
5 16549 80
8 1 < 1
10 1308 6
Total 20726

Probes per 
probeset

Number of 
unigenes

% of the 
total
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Additional file 3: Exposed differentiating xylem tissue after removing the bark. 
Tissue was collected immediately with a stainless steel blade to minimize 
oxidation. 

 


