

CIRCULAR TÉCNICA Nº 36

PBP/3.1.4

SEMINÁRIO: "Resina de Pinus Implantados no Brasil"

IPEF – INSTITUTO DE PESQUISAS E ESTUDOS FLORESTAIS Depto. De Silvicultura – Curso de Engenharia Florestal – ESALQ-USP

Piracicaba – SP 11 e 12 de maio de 1978.

MELHORAMENTO GENÉTICO FACE À PRODUÇÃO DE RESINA

Sebastião Machado da Fonseca Paulo Yoshio Kageyama

IPEF – INSTITUTO DE PESQUISAS E ESTUDOS FLORESTAIS

IPEF – 10 ANOS DE INTEGRAÇÃO UNIVERSIDADE - EMPRESA

MELHORAMENTO GENÉTICO FACE À PRODUÇÃO DE RESINA

Sebastião Machado da Fonseca*
Paulo Yoshio Kageyama**

I. INTRODUÇÃO

O interesse crescente pela produção de resina visando a obtenção do breu e da terebentina tem motivado as empresas, com potencial de produção, a conduzir pesquisas no sentido de aumentar cada vez mais a sua produtividade. Assim, as pesquisas têm sido desenvolvidas e resultados altamente satisfatórios vêm sendo obtidos em função da melhoria das técnicas de extração, da escolha do tipo de árvore e da determinação do melhor período para resinagem. Por outro lado, poucos trabalhos vêm sendo conduzidos visando aproveitar o potencial genético das espécies produtoras face à produção de resina.

Ganhos expressivos na produção seriam passíveis de obtenção, à evolução conseguida na tecnologia de resinagem fosse associado ao material genético superior para alta produção de resina. Visando mostrar a importância das características da população e, como delas tirar proveito para estimativas de parâmetros genéticos fundamentais à predição de ganhos a serem alcançados nos diferentes estágios de um programa de melhoramento florestal.

II. VARIABILIDADE FENOTÍPICA

A condição básica para o emprego de qualquer método de melhoramento é a existência da variação quantitativa e/ou qualitativa do caráter a melhorar.

No caso presente, onde a característica desejada é a resina, tal variação existe e os componentes mais importantes dessa variação podem ser enumerados como seguem:

- a) <u>Espécie</u>. *BERZAGHI* (1972), menciona eu entre as inúmeras espécies existentes, em várias partes do mundo, apenas as do gênero *Pinus* são verdadeiramente produtoras de resina, ainda que a produção varie dentro desse gênero de espécie para espécie. Cita o autor, que o volume de resina e produtos dela obtidos, consumido pelo mercado mundial, são produzidos apenas por 5 espécies principais; *P. elliottii* var. *elliottii*, *P. caribaea* Morelet (englobando as variedades *caribaea*, *hondurensis* e *bahamensis*), *P. palustris*, *P. pinaster* e *P. sylustris*, sendo a primeira a maior produtora.
- b) <u>Procedência</u>. *GANSEL* et al (1971) atados por DORMAN e SGUILLACE, (1974) encontram que quando diferentes procedências foram testadas em um mesmo local, houve diferença de até 70% na produção de resina entre algumas procedências.

c) Fertilidade do solo e espaçamento.

A produção de resina está correlacionada com o crescimento diamétrico e com o tamanho e vigor da copa das árvores e estas características por sua vez são diretamente influenciadas pela fertilidade do solo e pelo espaçamento usado.

_

^{*} Eng^o Florestal Técnico do IPEF

^{**} Prof. Setor de Produção de Semente do Depto. De Silvicultura da ESALQ-USP.

Mc GREGOR (1957) citado por PRITCHETT e SMITH (1970) encontrou que adubação com NPK e micro-nutrientes efetuadas em um povoamento de *P. elliottii* var. elliottii com 12 anos de idade, na Flórida, aumentou o crescimento em 37% e a produção de resina de 23%, 7 anos após a aplicação.

- d) <u>Época de resinagem</u>. GURGEL FILHO (1972) trabalhando com *P. elliottii* var *elliottii* no estado de São Paulo, encontroou que a produção de resina decresce da primavera para o inverno. A diferença de produção entre as duas estações foi de 23% e este decréscimo na produção estava diretamente correlacionado com os declínios da temperatura e precipitação. Recomenda com base na experimentação desenvolvida, para o Estado de São Paulo, efetuar a resinagem no período compreendido entre 15 de setembro a 15 de julho.
- e) <u>Método de Resinagem</u>. A largura e o número de face de resinagem bem como a largura das estrias, concentração e aplicação do ácido sulfúrico influem na produção de resina num determinado período de resinagem, CLEMENTS (1970), GURGEL FILHO (1972) e BERZAGHI (1972).

f) <u>Idade, diâmetro, tamanho da copa e sanidade das árvores</u>.

Todos estes fatores direta ou indiretamente relacionam-se com as dimensões e vigor das árvores. De um modo geral árvores com maiores diâmetros e copas bem desenvolvidas produzem mais resina. Os quadros I, II adaptados de BEZARGHI (1972) e o gráfico I compilado de *GURGEL FILHO* (1972) comprovam estas afirmativas. (Ver apêndice 1, 2 e 3 respectivamente).

DORMAN e SQUILLACE (1974) citam que taxa de crescimento e produção de resina tendem a ser geneticamente correlacionadas. SQUILLACE (1966), citado por esses autores, encontrou que progênies de alta produção de resina produziram 12% a mais de madeira do que as progênies de produção média.

g) <u>Constituição genética</u>. Trabalhos conduzidos por *SQUILLACE* e *DORMAN* (1961), nos Estados Unidos com *P. elliottii* var. *elliottii* mostram que a característica produção de resina está sob forte controle genético. Da mesma forma que a produção, *SQUILLACE* (1964), ainda para a espécie *P. elliottii* var. *elliottii*, menciona que a composição química da terebentina varia grandemente de árvore para árvore e que os componentes químicos envolvidos são altamente herdáveis.

Em síntese, resumindo o que foi mencionado, podemos dizer que a variação fenotípica é função da variação ambiental e genética. Logo variação fenotípica = variação ambiental + variação genética.

A variação genética ou hereditária é a que realmente interessa para os trabalhos de melhoramento. O melhorista explorando a varibilidade fenotípica individual, através da seleção e emprego de métodos de melhoramentos adequados, procura detectar o quanto da variabilidade da característica considerada é controlada geneticamente e desta o quanto é transmissível às futuras gerações.

III. SELEÇÃO PARA A PRODUÇÃO DE RESINA.

O trabalho de seleção é de alta relevância dentro do programa de melhoramento pois, é sobre o material selecionado que serão concentrados os trabalhos futuros do programa. Assim, ao se iniciar a seleção, os objetivos a serem alcançados devem estar bem claros e estabelecidos. Em função dos objetivos serão definidas as características ou as características a serem melhoradas, o s pesos a serem dados a cada uma e a intensidade de seleção mais adequada.

No caso presente há possibilidade de se dirigir a seleção no sentido de se detectar árvores com alta produção e qualidade de resina, associadas à alta produção e qualidade da madeira, *SQUILLACE* (1964). Evidentemente, que um programa de melhoramento envolvendo, de uma só vez, todas as características mencionadas, seria extremamente complexo, uma vez que a correlação entre elas não é perfeita o que demandaria populações extensas e muito esforço para a detecção de um número suficiente de indivíduos, para assegurar uma base genética adequada à continuidade do programa.

O mais conveniente, talvez, seria a empresa conduzir programas distintos para a obtenção de maiores ganhos nas características desejáveis, ou seja, conduzir um programa visando a melhoria das árvores para forma, vigor e qualidade da madeira, e outro para alta produção e qualidade da resina, sem contudo causar grandes prejuízos na produção de madeira. O quadro III, vide apêndice 4, adaptado de *GURGEL FILHO* (1972) mostra a possibilidade de seleção para alta produção de resina associada à alta produção de madeira.

IV. GANHOS GENÉTICOS (Δg)

O ganho genético para uma determinada característica é o parâmetro que exprime o avanço da geração seguinte em relação à população original, Circular Técnica do IPEF nº 21 (1976). A sua magnitude é função dos seguintes parâmetros: herdabilidade da característica desejada, diferencial de seleção, variabilidade da característica e dos métodos de melhoramento usados.

O ganho genético é definido pela seguinte fórmula:

$$\Delta g = C.V. \times i.h^2$$

onde: C.V. = coeficiente de variação i = intensidade de seleção h² = coeficiente de herdabilidade

1. Herdabilidade de Característica (h²)

Como já mencionado, o melhorista procura detectar o quanto da variabilidade fenotípica é de natureza genética e desta, o quanto é transmissível aos descendentes. Estes valores são expressos pelo coeficiente da herdabilidade. Assim temos dois coeficientes:

a) O coeficiente de herdabilidade no sentido amplo que exprime a proporção da variância fenotípica que é de natureza genética, definido pela fórmula:

$$h^2 = \frac{\text{var. genética}}{\text{var. fenotípica}}$$

onde: var. genética = variância genética aditiva + variância genética não aditiva.

b) O coeficiente de herdabilidade no sentido restrito que exprime o quanto da variância genética é transmissível aos descendentes.

h2 (no sentido restrito) =
$$\frac{\text{var. genética aditiva}}{\text{var. fenotípica}}$$

onde: var. genética aditiva é o componente da variância genética que é transmissível aos descendentes.

O coeficiente de herdabilidade no sentido restrito é o que realmente tem valor nos programas, visando a produção de sementes geneticamente melhoradas.

Existem vários métodos que habitam o melhorista a determiná-lo, porém, de um modo geral todos eles envolvem as progênies. Daí depreende-se a importância dos testes de progênies.

SQUILLACE e DORMAN (1961), relatam para a espécie *P. elliottii* var. *elliottii*, nas condições dos Estados Unidos, que o coeficiente de herdabilidade no sentido restrito, par a característica produção de resina, é da ordem de 55%, o que significa dizer que a característica é altamente herdável.

2. Diferencial de seleção – Circular Técnica do IPEF nº 21 (1976).

É a medida da intensidade ou vigor na seleção, ou a diferença entre a média da população selecionada e a média da população original.

Esse parâmetro pode ser expresso em termos de intensidade de seleção (i), que é dado em função da porcentagem de seleção adotada. Os valores de intensidade de seleção são tabelados e os principais estão relacionados no quadro abaixo.

% SELEÇÃO	INTENSIDADE DE SELEÇÃO (i)
33% ou 1: 3	1,16
20% ou 1: 5	1,40
10% ou 1: 10	1,76
5% ou 1: 20	2,06
2% ou 1: 50	2,42
1% ou 1: 100	2,60
0,2% ou 1: 500	2,90
0,1% ou 1: 1.000	3,40
0,02% ou 1: 5.000	3,60
0,01% ou 1: 10.000	4,00

3. Variabilidade da característica

Essa variabilidade é expressa em termos do desvio padrão ou do coenficiente de variação, ou seja, expressa a magnitude da dispersão dos valores observados em torno do valor central ou médio.

SQUILLACE e DORMAN (1961) com P. elliottii var. elliottii nos Estados Unidos, encontraram para as árvores estudadas, de uma população, uma produção média de

6,4 kg e um desvio padrão de 2,0 kg. Expressando em termos de coeficiente de variação teríamos o valor de 31,25%.

Considerando o Quadro III, do apêndice nº 4, verifica-se que a produção máxima foi de 15,876, a mínima de 2,818 kg e a média de 10,21 kg, para um total de 30 observações. Com base na amplitude total 13,05 kg e o número de observações (30) podemos estimar o desvio padrão para essa população no estado de São Paulo. Segundo *STEEL* e *TORRIE* (1960) o desvio padrão assim estimado seria 3,18 kg. Expressando em termos de coeficiente de variação teríamos o valor de 31,14%.

Observe que C.V. = 31,14% encontrado para essa população nas condições do Brasil é igual àquele C.V. = 31,25%, obtido por *SQUILLACE* e *DORMAN* (1961) nas condições dos Estados Unidos. Para efeito de cálculo assumiremos um valor teórico para o coeficiente da variação igual a 30%.

4. Métodos de melhoramento

4.1. Com base na seleção massal.

Baseando-se nesse tipo de seleção há dois métodos de melhoramento para a produção de sementes melhoradas a curto prazo.

a) <u>Áreas de coleta de sementes</u> – Por esse método árvores são selecionadas e sementes são coletadas, das mesmas, sem eliminação das árvores de produção inferiores da população, ou seja, a seleção é realizada somente do lado feminino já que não se controlam as árvores polinizantes (lado masculino).

O ganho genético obtido por esse método, para a característica em estudo, admitindo uma intensidade de seleção de 5% (i = 2,06) e assumindo um C.V. de 30% (0,30) e uma herdabilidade de 0,55 seria:

$$\Delta g = \frac{1}{2} (0.30 \cdot 0.55 \cdot 2.06) = 0.1699$$
 ou 17%

A divisão por (1/2) é explicada devido a seleção ter sido praticada somente do lado feminino.

As principais desvantagens desse método seria a dificuldade na coleta de sementes, pelo fato das árvores se encontrarem dispersas na população, e a baixa produção de sementes devido a competição entre as copas.

Essa última desvantagem poderia ser minimizada pelo desbaste das árvores ao redor das selecionadas.

b) <u>Áreas de produção de sementes</u> — Por esse método as árvores que apresentam boa produção de resina são selecionadas e as de produção inferior são eliminadas, sendo portanto, a seleção realizada no lado feminino e masculino.

Esse método apresenta as vantagens de se poder concentrar as árvores para a coleta de sementes e de criar condições, através de técnicas de manejo, para alta produção de sementes melhoradas. Por outro lado, exige que as áreas sejam isoladas de polinizações indesejáveis e que a seleção não seja muito intensa (no máximo 5%, para não prejudicar a polinização entre as árvores na área).

O ganho genético obtido por esse método admitindo a intensidade de seleção máxima 5% (i = 2,06) e igualmente assumindo valores para C.V. e h^2 , serão:

4.2. Com base na seleção individual

Utilizando-se desse tipo de seleção temos os métodos a seguir, todos baseados em seleções intensas, geralmente, acima de 1:1000.

a) <u>Pomares de Sementes Clonais de 1ª Geração</u> – Por esse método as árvores selecionadas são propagadas vegetativamente e suas individualidades são mantidas no decorrer do programa. Paralelamente as árvores propagadas são avaliadas através de "Teste de Progênie" visando definir os genótipos superiores, bem como fornecer subsídios para a estimativa dos parâmetros genéticos, principalmente a herdabilidade.

O ganho genético obtido por esse método, assumindo uma intensidade de seleção 1:1000 (i=3,60) e os mesmos C.V. e h^2 já considerados seria:

$$\Delta g = 0.30 \cdot 0.55 \cdot 3.60 = 0.594$$
 ou 59.4%

- b) Coleta de sementes das árvores selecionadas Esse método proposto por *SQUILLACE* e *DORMAN* (1961), consiste em coletar sementes das árvores selecionadas para propagação vegetativa. Difere da área de coleta de sementes pelas seguintes razões:
 - 1. A intensidade de seleção adotada é, geralmente, acima de 1:1000.
- 2. As árvores se encontraram mais dispersas na área face a intensidade de seleção adotada.

O ganho genético por este método, assumindo uma intensidade de seleção 1:1000 (i = 3,60), estaria entre àqueles obtidos nas áreas de Coleta e de Produção de Sementes

$$\Delta g = \frac{1}{2} (0.30 \cdot 0.55 \cdot 3.60) = 0.297$$
 ou 29,7%

Este método pela dificuldade e o custo da coleta de sementes talvez não seja viável.

- c) <u>Pomares de sementes por mudas</u> Esse método consiste na seleção entre e dentro das famílias nos testes de progênie.
- O ganho genético obtido por esse método seria similar ao obtido no Pomar Clonal de 1ª geração, ou seja, 59,4%.
- d) <u>Pomares de sementes clonais de 1,5 geração</u> Com base nos rsultados obtidos nos Testes de Progênie, efetua-se dentro do Pomar de Sementes Clonais de 1^a geração a eliminação dos piores clones, deixando apenas os genotipicamente superiores.

Segundo *SQUILLACE* e *DORMAN* (1961), se a seleção for efetuada no sentido de deixar somente os clones, genotipicamente comprovados, com produção de 2 vezes a da população original, o ganho seria de 100%.

e) <u>Pomares de sementes clonais de 2ª geração</u> – Esse método consiste em propagar vegetativamente as melhores árvores das melhores famílias do teste de progênie.

O ganho genético nesse estágio segundo *SQUILLACE* e *DORMAN* (1961) é de aproximadamente 152%.

As implicações destes métodos mais intensivos de melhoramento são: o período de tempo exigido para a obtenção das sementes e o problema relacionado com a deteriorização genética ou endogamia devido ao decréscimo do número de clones a cada geração do pomar. Desta forma é sempre conveniente, iniciar o programa com um maior nº de clones, segundo *SHEBOURNE* (1973), de 100 a 200 clones, e sempre que possível incluir outros clones no pomar a medida que os mesmos vão sendo detectados em outros programas.

V. CONSIDERAÇÕES FINAIS

Assumindo que os dados constantes no Quadro III representam a população estudada por *GURGEL FILHO* (1972), temos que a produção média inicial de resina é de 10,21 kg em 3 anos de resinagem. Assim os ganhos de produção, por método de melhoramento usado, e o período de tempo estimado para serem alcançados encontram-se no Quadro IV do apêndice nº 5.

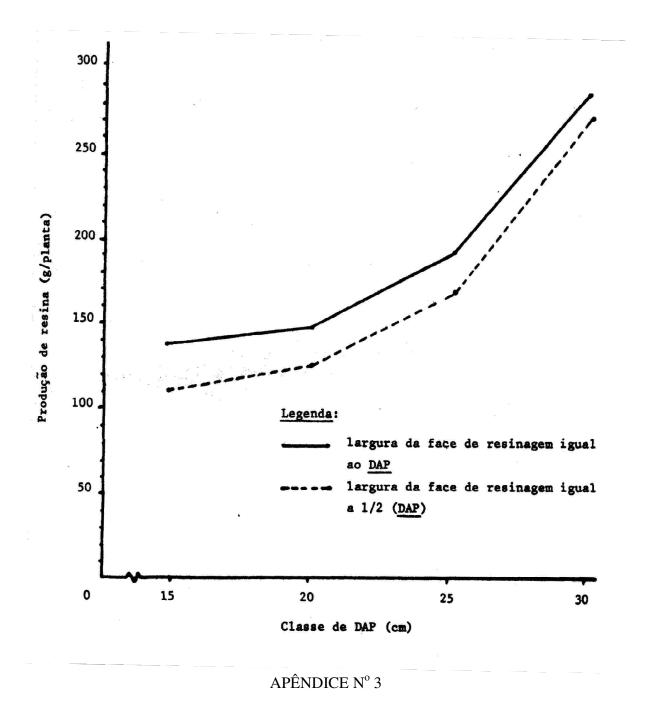
Com base no exposto verifica-se a alta potencialidade de um programa desta natureza, desde o seu estágio inicial, ou seja, desde os métodos mais simples e menos dispendiosos de melhoramento, quais sejam: ÁREA DE COLETA E DE PRODUÇÃO DE SEMENTES. Por outro lado, plantações com capacidade de produção de resina de até 2 vezes mais à média da população original, poderiam ser obtidas a partir do 14° ano de início do programa. A partir do 20° ano, é prevista uma capacidade de produção igual a 2,5 vezes à média inicial o que mostra a possibilidade que se nos apresenta para um programa a mais longo prazo.

BIBLIOGRAFIA

- *BERZAGHI, C.* <u>Pinus spp e resinagem.</u> São Paulo, Instituto Florestal, 1972, 33p. (Boletim Técnico nº 2)
- CLEMENTS, R.W. & GURGEL FILHO, O.A. Métodos de moderna resinagem. São Paulo, Instituto Florestal, 1970. 31p.
- *DORMAN, K.W.* & *SQUILLACE, A.E.* Genetics of slash pine. Washington, Forest Service, 1974. 20p. (Research Paper WO 20)
- GURGEL FILHO, O.A. Contribuição à resinagem. São Paulo, Instituto Florestal, 1972. 39p.
- MELHORAMENTO GENÉTICO: Seleção massal e individual. Piracicaba, IPEF, 1976. 14p. (Circular técnico, 21).
- PRITCHETT, W.L. & SMITH, W.H. Fertilizing slash pine on sandy soils of the lower coastal plain. IN: YOUNGBERG, C.T. & DAVEY, C.B. ed. <u>Proceedings of the Third North American Forest soils conference held at North Carolina State University at Ralugh.</u> Corvallis, Oregon State University Press, 1968. p.32.
- SHELBOURNE, C.J.A. Planning breeding programs for tropical conifers grown as exotics. IN: BURLEY, J. & NIKLES, D.G., ed. <u>Selection and breeding to improve some tropical conifers</u>. Oxford, C.F.I., 1973. v.2. p.157.
- SQUILLACE, A.E. & DORMAN, K.W. Selective breeding of slash pine for high oleoresin yield and other caracters. IN: Recent advances in botany. Toronto, University of Toronto Press, 1961 21.
- SQUILLACE, A.E. Finer pines aid turpentines. <u>Southern lumberman</u>, Nashiville, dez.1964.
- STEEL, G.D.R. & TORRIE, J.H. Principles and procedures of statistics: with special reference to the biological science. New York. Mc Graw-Hill, 1960, p.432.

 $\frac{\text{APÊNDICE N}^{\text{o}}}{\text{1}} 1$ QUADRO I. Média annual de produção de resina em toneladas por 10.000 faces.

Espécie: Pinus palustris


DAP	% de comprimento das copas						
(cm)	25	30	35	40	45	50	55
22,9	18,3	22,0	25,7	29,2	32,7	36,2	39,7
	(100)	(120)	(140)	(159)	(179)	(198)	(217)
25,4	23,4	26,9	30,4	34,1	37,6	41,1	44,6
	(128)	(147)	(166)	(186)	(205)	(224)	(244)
28,0	28,0	31,7	35,4	39,0	42,5	46,0	49,5
	(153)	(173)	(193)	(213)	(232)	(251)	(270)
30,5	33,1	36,8	40,5	44,0	47,5	51,0	54,5
	(181)	(201)	(221)	(240)	(259)	(279)	(298)
33,0	38,0	41,7	45,2	48,9	52,4	55,9	59,4
	(208)	(228)	(247)	(267)	(286)	(305)	(324)
35,5	42,9	46,6	50,3	53,8	57,3	60,8	64,3
	(234)	(255)	(275)	(294)	(313)	(332)	(351)

APÊNDICE N° 2

QUADRO II. Média annual de produção de resina em toneladas por 10.000 faces.

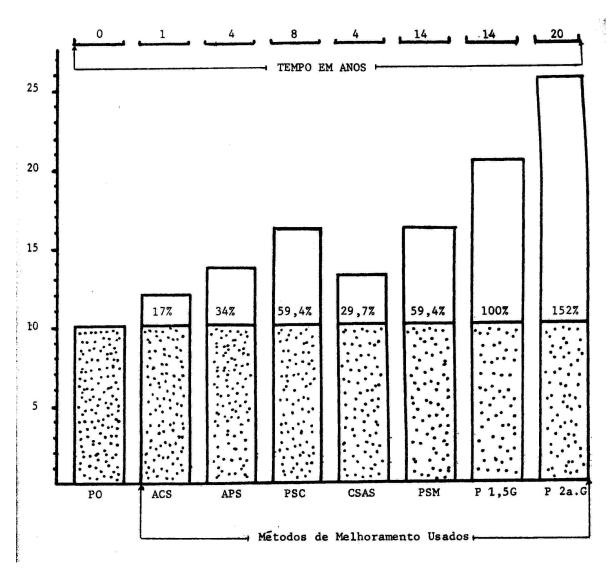
Espécie: Pinus elliottii var. elliottii

DAP	% de comprimento das copas						
(cm)	20	25	30	35	40	45	50
22,9	17,9	21,8	25,5	29,4	33,1	37,0	40,7
	(100)	(122)	(142)	(164)	(185)	(207)	(227)
25,4	23,4	27,3	31,0	34,9	38,6	42,5	46,2
	(130)	(152)	(173)	(195)	(216)	(237)	(258)
28,0	29,0	30,8	36,6	40,5	44,2	48,1	51,8
	(162)	(172)	(204)	(226)	(247)	(269)	(289)
30,5	34,5	38,4	42,1	46,0	49,7	53,6	57,3
	(193)	(214)	(235)	(257)	(278)	(299)	(320)
33,0	40,1	43,8	47,7	51,6	55,3	59,2	62,9
	(224)	(245)	(266)	(288)	(309)	(331)	(351)
35,5	45,6	49,5	53,2	57,1	60,8	64,4	68,4
	(255)	(276)	(297)	(319)	(340)	(360)	(382)

<u>GRÁFICO I</u>. Produção média de resina, por período de 14 dias, para dois tratamentos e 4 classes de diâmetro, abrangendo 62 épocas de coleta.

Espécie: Pinus elliottii var. elliottii

APÊNDICE Nº 4


QUADRO III. Variabilidade individual na produção de Resina.

(A produção refere-se a 42 estrias ou 3 anos consecutivos de resinagem).

Classes DAP	Nº de Plantas	Médias	Produções (kg)		
Classes DAI	iv ue i iainas	Produção (kg)	Máxima	Mínima	
15	6	7,753	13,425	2,818	
20	12	9,000	13,745	4,816	
25	9	9,227	16,366	3,917	
30	3	14,853	15,876	12,964	

APÊNDICE Nº 05

<u>QUADRO IV</u> – Ganhos em produção (em kg) obtidos em cada método de melhoramento usado e tempo a serem alcançados.

Legenda:

P.O. = Média de produção da população original

ACS = Área de coleta de sementes

APS = Área de produção de sementes

PSC = Pomar de sementes clonal

CSAS = Coleta de sementes das árvores selecionadas

PSM = Pomar de sementes por mudas

P. 1,5G = Pomar de semente clonal de 1,5 geração P.2º G = Pomar de sementes clonal de 2ª geração