

IPEF: FILOSOFIA DE TRABALHO DE UMA ELITE DE EMPRESAS FLORESTAIS BRASILEIRAS

ISSN 0100-3453

CIRCULAR TÉCNICA Nº 179

DEZEMBRO 1991

COMPORTAMENTO FLORESTAL DO <u>Eucalyptus grandis</u> E <u>Eucalyptus saligna</u> EM DIFERENTES ESPAÇAMENTOS

Carlos H. Garcia* Lenine Corradine** Silvio F. Alvarenga**

Esquema geral do ensaio experimental

O experimento foi instalado em fevereiro de 1978 no município de Santa Rita do Passa Quatro, SP, no talhão 16 B da Fazenda Cara Preta, com a finalidade de testar os espaçamentos mais produtivos para as espécies *E. saligna* e *E. grandis* e a influência sobre as características da madeira.

O delineamento estatístico adotado foi blocos ao acaso com 8 tratamentos e 4 repetições e parcelas quadradas de 64 plantas, com bordadura única ao redor da parcela, sendo consideradas, portanto, 36 plantas úteis.

Os tratamentos são relacionados a seguir:

^{*}Eng° Florestal, Pesquisador do IPEF

^{*} Eng^{os} Florestais, Celpav Florestal S/A

TRAT.	ESPÉCIE	ESPAÇAMENTO (m)
1	E. grandis	3.0×1.0
2	E. grandis	3,0 x 1,5
3	E. grandis	3,0 x 1,5
4	E. grandis	3,0 x 2,0
5	E. saligna	3.0×2.5
6	E. saligna	3,0 x 1,5
7	E. saligna	3,0 x 2,0
8	E. saligna	3.0×2.5

Foi efetuada adubação na cova com 200 g de adubo NPK (10 – 34 – 6) por planta.

No final do ensaio, aos 10 anos de idade, foi realizada a cubagem de 7 árvores por parcela, objetivando a determinação de equações volumétricas para a estimativa do volume real, cujos resultados serão apresentados neste relatório.

Foi realizado, também, um estudo visando avaliar as influências do espaçamento sobre as características de qualidade da madeira e rendimento em celulose de *E. grandis* e *E. saligna*.

Análises e resultados

Anualmente foram medidos os dados dendrométricos do ensaio e realizados os testes estatísticos pertinentes para o acompanhamento e avaliação do experimento.

Os resultados da análise de variância aos 10 anos de idade (Tabela 1) mostram haver diferença estatísticas significativas entre as espécies e entre os espaçamentos adotados, demonstrando ser recomendável a seleção de um espaçamento ideal para cada espécie, e também da melhor espécie a fim de se alcançar maior produtividade.

Tabela 1: Valores de F, resultantes da análise da variância para diâmetro a altura do peito – DAP (cm), Altura (m), Volume Cilíndrico (m³/ha) e % falhas, aos 10 anos de idade.

Causas de Variação	DAP	Altura	Vol. Cil.	% Falhas
Blocos	3,38*	2,73	3,01	3,27*
Espaçamento (A)	17,22**	3,61*	2,14	2,21
Espécies (B)	0,00	8,47*	65,66**	2,21 59,32**
ΑXΒ	0,22	0,28	3,08	2,08

^{*} significativos ao nível de 5% de probabilidade.

Observaram-se diferenças estatísticas significativas entre as média de DAP e também de altura dos diferentes tratamentos em função do espaçamento utilizado. Considera-se também, para a variável altura, um efeito independente e significativo de espécies sobre esta característica.

Há também um efeito de espécies sobre a produtividade, expressa pelo Volume Cilíndrico (m³/ha), havendo ainda uma interação entre espécies e espaçamentos, indicando que para cada espécie deve existir um espaçamento cuja produtividade média deva diferir das demais estatisticamente.

^{**} significativos ao nível de 1% de probabilidade.

Deve-se considerar ainda a diferença altamente significativa da porcentagem de falhas entre as espécies de *E. saligna* e *E. grandis*. Estas diferenças são comprovadas pela aplicação do teste de Tukey ao nível de 5% de probabilidade, cujos resultados são apresentados nas Tabelas 2 e 3.

Trat.	DAP	Tukey	Trat.	Altura	Tukey
8	14,37	A	3	19,47	A
4	14,23	A	4	19,23	A
7	13,62	A	2	18,94	AB
3	13,28	AB	8	18,28	AB
6	12,39	ABC	7	18,18	AB
2	12,36	ABC	1	18,00	AB
1	11,19	BC	6	17,96	AB
5	10,77	C	5	16,01	В

A análise dos resultados mostra que com o aumento do espaçamento, há um acréscimo no DAP médio, considerando-se uma mesma espécie, snedo que fato semelhante ocorre também para a variável Altura.

Tabela 3: Comparação de médias para as variáveis Volume Cilíndrico (m³/ha) e % Falhas, aos 10 anos de idade.

Trat.	DAP	Tukey	Trat.	Altura	Tukey
2	468,32	A	2	20,14	A
1	463,27	A	3	20,14	A
3	419,86	AB	4	25,00	AB
4	339,88	ABC	1	32,64	ABC
7	290,21	BC	8	40,98	BCD
5	266,49	C	7	44,45	BCD
8	261,17	C	5	51,39	CD
6	234,15	C	6	56,25	D

Observa-se na Tabela 3 que o *E. grandis* alcançou uma maior produtividade que o *E. saligna*, em termos de Volume Cilíndrico. O *E. grandis* nos espaçamentos 3,0 x 1,0 e 3,0 x 1,5 apresnetou superioridade sobre os demais tratamentos.

Para o *E. saligna*, o espaçamento 3,0 x 2,0 foi o melhor, sendo o espaçamento 3,0 x 1,5 o que resultou em menor produtividade e sobrevivência da espécie.

Apesar do *E. saligna* apresentar o maior DAP e um bom desenvolvimento em altura, (que não difere estatisticamente do maior) para o espaçamento 3,0 x 2,5 (trat. 8). A espécie mostrou uma baixa produtividade volumétrica.

O bom desenvolvimento em altura e diâmetro das árvore observados neste tratamento, não o definem como sendo o melhor porque estes valores são resultantes do amplo espaçamento adotado e ainda favorecido (quando se trata principalmente do diâmetro) pela abertura da área resultante da alta porcentagem de falhas nestas parcelas. Desta forma têm-se árvores de grande diâmetro e altura, mas em pequeno número, resultando, portanto, numa baixa produtividade por hectare.

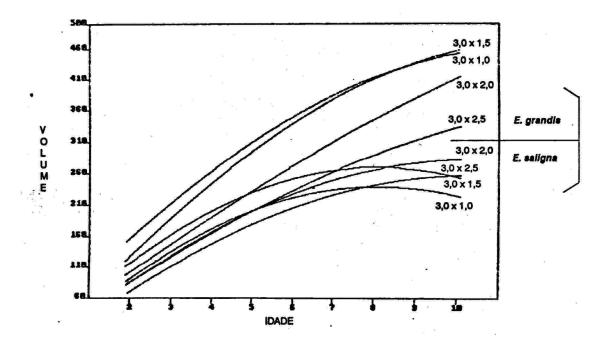
São apresentadas, a seguir, as médias anuais dos tratamentos para as variáveis DAP, Altura, Volume Cilíndrico e porcentagem de falhas.

Tabela 4: Médias dos tratamentos nos diferentes anos, para as variáveis em estudo.

					ANO					
	TRAT	79	80	81	82	83	84	85	86	88
	1		6.80	7.90	8.24	8.90	9.02	9.70	10.49	11.19
	2		7.70	9.20	9.77	10.67	10.89	11.40	11.92	12.36
	3		7.80	9.40	9.92	10.86	11.12	11.75	12.56	13.27
	4		8.30	9.90	10.48	11.44	11.69	12.54	13.29	14.23
DAP	média <i>E. grandis</i>		7.65	9.10	9.60	10.47	10.68	11.35	12.07	15.78
	5		6.60	7.60	8.06	8.96	8.98	9.77	10.28	10.76
	6		6.90	8.10	8.51	9.40	9.43	10.35	11.37	12.40
	7		7.80	9.10	9.79	10.95	11.07	12.01	12.79	13.62
	8		7.90	9.40	10.07	11.42	11.61	12.63	13.37	14.37
	média <i>E. saligna</i>		7.30	8.55	9.11	10.18	10.27	11.19	11.95	12.79

					ANO					
	TRAT	79	80	81	82	83	84	85	86	88
	1	5.65	11.20	13.70	14.55	14.93	15.37	16.27	16.64	18.00
	2	5.51	11.20	14.60	15.49	16.63	17.18	17.59	17.59	18.94
	3	5.24	10.70	14.10	15.30	15.98	16.54	17.33	17.72	19.47
	4	5.17	10.50	14.00	14.89	15.78	16.51	17.27	17.76	19.23
ALTURA	média <i>E. grandis</i>		10.90	15.06	15.06	15.83	16.40	17.12	17.43	18.91
AL	5	4.83	9.60	12.81	12.81	13.96	14.54	15.03	15.33	16.01
	6	4.72	9.60	13.35	13.35	14.48	15.24	15.78	15.90	17.94
	7	4.66	9.50	14.09	14.09	15.44	16.18	16.30	16.62	18.18
	8	4.73	9.40	14.01	14.01	15.25	16.04	16.87	16.87	18.29
	média <i>E. saligna</i>		9.53	13.57	13.57	14.78	15.50	16.18	16.18	17.61

					ANO					
	TRAT	79	80	81	82	83	84	85	86	88
	1		137.90	228.70	277.81	314.41	344.41	387.92	387.92	463.27
	2		110.00	205.20	251.77	304.72	336.64	378.10	385.95	468.32
	3		85.50	161.20	202.10	240.48	261.96	308.78	331.78	419.86
ij	4		72.80	138.30	170.64	206.46	224.65	266.04	275.32	339.88
VOLUME CIL.	média <i>E. grandis</i>		101.55	183.55	225.58	266.52	291.92	335.21	345.24	422.83
	5		101.40	173.60	207.75	243.16	250.87	260.21	247.37	266.49
\rangle	6		80.20	143.40	177.55	209.75	217.49	240.51	216.01	234.15
	7		73.20	137.50	171.40	212.11	224.07	246.51	249.49	290.21
	8		63.20	116.80	151.89	186.59	196.87	228.59	232.99	261.17
	média <i>E. saligna</i>		79.50	142.83	177.15	212.90	275.55	243.96	236.46	263.01


					ANO					
	TRAT	79	80	81	82	83	84	85	86	88
	_							10.10		
	I							13.19	24.31	32.64
	2							14.58	17.36	20.14
	3							13.19	16.67	20.14
∞	4							14.58	20.14	25.00
% FALHAS	média <i>E. grandis</i>							13.88	19.62	24.48
% F.	5							36.81	43.75	51.39
0.	6							28.47	43.75	51.39
	7							28.47	41.67	56.25
	8							27.08	33.33	44.45
	média <i>E. saligna</i>							30.21	37.33	48.27

Em termos médios, a espécie *E. grandis* superou o *E. saligna*, em todas as características, apresentando inclusive resultados bem significativos em relação à porcentagem de falhas, quando comparadas as duas espécies. O *E. saligna*, aos 10 anos de idade, perdeu aproximadamente 50% do número de árvores em relação ao plantio. Deve-se observar no entanto, que o ensaio sofreu a ação de geadas no iníicio do experimento.

A análise do Volume Cilíndrico por hectare revela que as maiores produções são obtidas para os espaçamentos 3,0 x 1,0 m e 3,0 x 1,5 m para o *E. grandis* (tratamentos 1 e 2), sendo que a superioridade destes tratamentos vem ocorrendo desde os primeiros anos do experimento.

Para o *E. saligna* os melhores tratamentos são para o espaçamento 3,0 x 2,0 m, aos 10 anos de idade, sendo que foram registrados outros tratamentos como superiores, durante a vida útil do experimento. Considerando-se portanto que o ciclo da floresta será de 6 a 7 anos, o melhor tratamento para produção de madeira de *E. saligna*, vem a ser o trat. 7, no qual se utiliza o espaçamento 3,0 x 2,0 m, apesar deste se diferenciar pouco dos demais.

Figura 1: Curvas de crescimento expressando a produtividade volumétrica (m³/ha) em função da idade do experimento.

As equações que expressam a produtividade (m³/ha) em função da idade e os valores do coeficiente de correlação e de F referentes às curvas apresentadas na Figura 1 são relacionados a seguir:

Trat.	Equação	\mathbf{r}^2	F
1	$V = 24.4737 + 71.6551 I - 2.89746 I^2$.98	116.87
2	$V = -14.762 + 76.9806 I - 2.98790 I^{2}$.98	158.49
3	$V = 4.70499 + 50.5264 I - 0.989003 I^{2}$.99	185.21
4	$V = -6.92340 + 48.9551 I - 1.49671 I^{2}$.99	183.43
5	$V = 1.11195 + 67.0632 I - 4.15215 I^{2}$.95	43.20
6	$V = -22.4377 + 64.6909 I - 4.00174 I^2$.95	51.38
7	$V = -20.2102 + 58.0029 I - 2.78543 I^2$.98	115.60
8	$V = -28.9138 + 54.6791 I - 2.61105 I^2$.99	2444.51

onde

V = Volume Cilíndrico (m³/ha); I = ICADE da floresta (anos).

Observa-se claramente a superioridade do *E. grandis* em relação ao *E. saligna*, a maior produtividade dos tratamentos com menor espaçamento para *E. grandis*.

As curvas de produtividade ajustadas por equações de regressão polinomial demonstram que as espécies atingem estágios de estagnação de crescimento (produtividade) em diferentes idades em função do espaçamento adotado. O *E. saligna* alcançou, para todos os espaçamentos mais abertos, desde que não se tornem anti-econômicos.

Ainda para o *E. grandis*, exite uma maior influência do espaçamento na produção de Volume Cilíndrico, sendo que esta produção aumenta com a redução do espaçamento.

Para o *E. saligna* tal fato não pôde ser comprovado. Apesar disto pode-se determinar os tratamentos que proporcionam maior produtividade para a espécie. Assim sendo, o *E. saligna* apresenta maior produtividade nos espaçamentos 3,0 x 2,0 m e 3,0 x 1,5 m com ciclos aproximadamente iguais de 7 anos. Para os espaçamentos 3,0 x 2,5 e 3,0 x 1,0 m, o ponto de estagnação da produtividade ocorre mais cedo, e com baixa produção de madeira, não sendo recomendáveis.

São apresentados a seguir os valores médios obtidos em função dos espaçamentos adotados no ensaio.

Tabela 5: Médias de DAP, Altura, Volume Cilíndrico e % falhas aos 10 anos de idade, para os espaçamentos utilizados no experimento.

E. grandis			E. saligna				Médio					
Espto	DAP	ALT.	V.C.	%F	DAP	ALT.	V.C.	%F	DAP	ALT.	V.C.	%F
$3,0 \times 1,0$	11,19	18,00	463.27	32,64	10,77	16,01	266,49	51,39	10,98	17,00	364,88	42,02
$3,0 \times 1,5$	12,36	18,94	468.32	20,14	12,39	17,94	234,15	56,25	12,38	18,44	351,24	38,20
$3,0 \times 2,0$	13,28	19,47	419,86	20,14	13,62	18,18	290,21	44,45	13,45	18,83	355,04	32,30
3,0 x 2,5	14,23	19,23	339,88	25,00	14,37	18,28	261,17	40,98	14,30	18,76	300,53	32,99

Para comprovação dos resultados foram estimados os volumes reais em estéreis por hectare.

Foram determinadas equações volumétricas para cada tratamento através da cubagem de 7 árvores em cada parcela experimental (28 árvores por tratamento). As equações utilizadas são apresentadas abaixo:

Trat.	Equação
1	VTCC = $0.00993048 + 0.0000246425 \times D^2H$
2	$Log (VTCC) = -4,109710 + 0,880224 \times Log D^2H$
3	VTCC = $0.00296368 + 0.0000271898 \times D^2H$
4	$Log (VTCC) = -4,234390 + 0,918774 \times Log D^{2}H$
5	$Log (VTCC) = -4,221440 + 0,897428 \times Log D^{2}H$
6	$Log (VTCC) = -4,170220 + 0,897428 \times Log D^{2}H$
7	$Log (VTCC) = -5,003920 + 1,103590 \times Log D^2H$
8	VTCC = $0,000827119 + 0,0000247575 \times D^2H$

Considerando-se porém, que aos 10 anos de idade, não foram detectadas diferenças, estatísticas significativas de volume para espaçamentos dentro da mesma espécie, pode-se utilizar as equações gerais obtidas para cada espécie, que são apresentadas a seguir:

Espécie	Equação
E. grandis	$LOG (VTCC) = -4.18447 + 0.8999995 \times LOG (D^2H)$
E. saligna	$LOG (VTCC) = -4.32217 + 0.922160 \times LOG (D^2H)$

onde

LOG = Logaritmo decimal

VTCC = Volume total com casca (estéreis)

D = Diâmetro a altura do peito (m)

H = Altura (m)

Foram determinados o Volume sólido de madeira para cada tratamento, tnedo-se 7 árvores por parcela e 4 repetições. Mediu-se também o Volume empilhado desta madeira e foi calculado o Volume Cilíndrico total por tratamento.

Com estes dados determinou-se o fator de forma e fator de empilhamento para cada espécie e espaçamento.

Os dados são apresentados na Tabela 6.

Tabela 6: Valores de Volume Cilíndrico, Volume Sólido, Volume empilhado, fator obtidos pela cubagem de 7 árvores pro parcelas, aos 10 anos de idade.

TRAT	VCIL	VSOL	VEMP	FF	FE
1.000	1.617	.577	1.033	.358	1.792
2.000	1.895	.701	1.110	.367	1.568
3.000	2.128	.758	1.270	.355	1.670
4.000	2.489	.925	1.566	.370	1.707
5.000	1.752	.583	1.090	.335	1.979
6.000	2.363	.727	1.139	.305	1.559
7.000	2.929	.904	1.517	.318	1.630
8.000	3.319	1.040	1.747	.314	1.676

Sendo

VCIL = Volume Cilíndrico (m³)

VSOL = Volume obtido na cubagem rigorosa (st)

VEMP = Volume empilhado (m³)

FF = Fator de forma

FE = Fator de empilhamento

Com base nos dados obtidos na análise da qualidade da madeira, foram tabelados os valores médios de densidade básica (g/cm³) da madeira para cada tratamento e o rendimento depurado de produção de matéria seca, e calculados o total de matéria seca produzido por hectare e total de celulose absolutamente seca por hectare, e também o consumo específico respectivo.

Tabela 7: Valores de Volume Cilíndrico (m³/ha). Volume total com casca (st/ha), Densidade básica (g/cm³), rendimento depurado (%), total de matéria seca (ton/ha), total de celulose absolutamente seca (ton/ha) e Consumo Específico (m³sol/ton.), aos 10 anos de idade, das árvores cubadas.

ESPT ^O	VCHA	VSHA	DB	RD	TMSHA	TCASHA	CE			
E. grandis										
3.0	463.27	167.65	.488	53.0	81.22	43.046	3.872			
4.5	468.32	170.78	.477	50.1	81.52	40.839	4.183			
6.0	419.86	149.29	.492	52.0	73.32	38.127	3.916			
7.5	339.88	126.17	.488	52.0	61.56	32.012	3.944			
MÉDIA	422.83	153.48	.486	51.8	74.40	38.056	3.979			
E. saligna										
3.0	266.49	91.16	.515	43.5	46.87	20.386	4.474			
4.5	234.15	72.45	.520	51.5	37.75	19.440	3.736			
6.0	290.21	88.88	.525	48.4	46.58	22.542	3.941			
7.5	261.17	81.68	.533	50.3	43.51	21.885	3.731			
MÉDIA	263.01	83.54	.523	48.4	43.67	21.063	3.970			

Os melhores tratamentos são aqueles que apresentam boa produtividade volumétrica, maiores rendimentos na produção da celulose e menor consumo específico.

Entre as espécies testadas, o *E. grandis* demonstrou ser mais propício para a atividade produtiva, nas mesmas condições do ensaio. A espécie apresenta maior produtividade volumétrica de madeira por hectare, maiores rendimentos na depuração de celulose e conseqüentemente maior produção de celulose por área plantada, apesar de sua densidade média ser inferior à do *E. saligna*.

Entre os espaçamentos testados, os tratamentos com 3,0 x 1,0 e 3,0 x 1,5 m por árvore, demonstram proporcionar um maior retorno, em termos de produção de celulose, que os tratamentos com espaçamentos mais amplos, para a espécie de *E. grandis*. Observase claramente a diminuição da produtividade de celulose com o aumento do espaçamento. As considerações econômicas, porém, serão os mais importantes indicadores para a realização de plantios de *E. grandis* em espaçamentos reduzidos.

Para o *E. saligna*, descarta-se o trat. 5 (3,0 x 1,0 m) por apresentar, entre os tratamentos da espécie, menor Densidade básica rendimento depurado muito inferior, e conseqüentemente o maior consumo específico, apesar de sua produção de celulose não se diferenciar dos demais tratamentos. Isto significa que para produzir a mesma quantidade de celulose por hectare, foi necessária uma produção em volume muito maior de madeira, o que não justifica sua implantação.

Entre os demais tratamentos de *E. saligna*, destaca-se o trat. 7 (3,0 x 2,0 m) que além de apresentar maior produtividade de madeira (m³/ha e st/ha), possui alta densidade básica, com rendimento depurado igual à média da espécie e alta produção de celulose por hectare com um consumo específico também igual ao da média da espécie.

Conclusões

Para as condições em que foi instalado o experimento, conclui-se que:

- Considerando-se o volume médio produzido por espécie, o *E. grandis* apresenta uma produção superior ao *E. saligna*.

- Apesar de *E. saligna* apresentar árvores com bom Diâmetro e desenvolvimento em Altura, a elevada % falhas nas parcelas resultou numa baixa produtividade por hectare.
- A abertura do espaçamento influenciou diretamente no diâmetro e Altura médias nas duas espécies.
- A produção volumétrica de madeira (m³/ha) aumentou com a redução do espaçamento, para o **E. saligna.**
- A porcentagem de falhas aumentou com a reducção do espaçamento, compromentendo a produtividade principalmente para o *E. saligna*.
- Além da produtividade, há uma influência do espaçamento sobre o ciclo de corte da floresta, observado principalmente para a espécie *E. grandis*.
- A densidade básica mostra tendências de diminuir com o aumento do espaçamento.
- A produção de matéria seca e de celulose absolutamente seca por hectare é tanto maior quanto menor o espaçamento, para a espécie *E. grandis*.
- Para o *E. saligna*, os espaçamentos mais apertados produziram, em média, tanto quanto os espaçamentos mais abertos.
- Aos 7 anos o $\it E. grandis$ apresentou cerca de 14% de falhas, ao passo que o $\it E. saligna$ apresentou 30%. Aos 10 anos as espécies apresentaram 25% e 48% respectivamente.
- Para o *E. grandis*, sem uma análise das considerações econômicas, os tratamentos 1 e 2 (3,0 x 1,0 m e 3,0 x 1,5 m) se destacam como os melhores.
- Para o *E. saligna*, embora não comprovado estatisticamente, o tratamento 7 (3,0 x 2,0) mostrou tendências de maior produtividade de madeira e bom rendimento na produção de celulose, em relação aos demais.
- O *E. saligna* comprovou ser menos tolerante que o *E. grandis* quanto à baixa fertilidade do solo, o elevado déficit hídrico local na estação seca e a competição entre as árvores.