INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA **– INPA**PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS – **PPG-CFT**

PADRÕES DE CRESCIMENTO E PREDIÇÃO DA ESTRUTURA DIAMÉTRICA COM AUXÍLIO DE BANDAS DENDROMÉTRICAS NA FLORESTA NACIONAL DE CAXIUANÃ - PA.

EVERTON CRISTO DE ALMEIDA

Manaus, AM Julho, 2008

INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA - **INPA**PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS DE FLORESTAS TROPICAIS – **PPG-CFT**

PADRÕES DE CRESCIMENTO E PREDIÇÃO DA ESTRUTURA DIAMÉTRICA COM AUXÍLIO DE BANDAS DENDROMÉTRICAS NA FLORESTA NACIONAL DE CAXIUANÃ - PA.

EVERTON CRISTO DE ALMEIDA ORIENTADOR: Dr. JOAQUIM DOS SANTOS

Dissertação apresentada ao Instituto Nacional de Pesquisas da Amazônia, como parte dos requisitos para obtenção do título de Mestre em Ciências de Florestas Tropicais, área de concentração Manejo Florestal.

Manaus, AM Julho, 2008 Almeida, Everton Cristo de

Padrões de crescimento e predição da estrutura diamétrica com auxílio de bandas dendrométricas na Floresta Nacional de Caxiuanã – PA. / Everton Cristo de Almeida: INPA, 2008.

85 p. il.

Dissertação de Mestrado

- 1. Floresta Amazônica; 2. Dendrometria; 3. Manejo Florestal; 4. Incremento
- 5. Terra preta antropogênica.

Sinopse:

Padrões de crescimento de árvores foram estudados, no sentido de realizar a predição da estrutura diamétrica de espécies florestais, crescendo em Latossolo amarelo e em terra preta antropogênica, localizadas na Floresta Nacional de Caxuianã – PA.

À minha Mãe, pelo amor, criação e sinceridade na correção dos meus atos;

A meu Pai, pelo respeito e, como pesquisador, pelo incentivo na busca ao conhecimento científico na Amazônia;

Aos meus irmãos, Ruth, Ederson e Jorge, por acreditarem neste feito;

À Viviane Daufemback, pelo incentivo e apoio.

À minha "semente", meu filho Gabriel, que muito me faz falta neste caminho que escolhi!

DEDICO

AGRADECIMENTOS

Ao Instituto Nacional de Pesquisas da Amazônia - INPA.

Ao Museu Paraense Emílio Goeldi (MPEG) e Estação Científica Ferreira Penna - ECFP

À Universidade Federal Rural da Amazônia - UFRA

À Universidade Federal do Pará, departamento de Meteorologia. - UFPA

À Universidade Federal do Amazonas - UFAM

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/CAPES e ao

Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPq.

À Coordenação do Programa de Pós-Graduação (Dr. José Francisco de Carvalho Gonçalves)

Ao Projeto: "PAN-AMAZONIA" (RAINFOR/Oxford –UK).

Aos meus orientadores Drs. Joaquim dos Santos e Niro Higuchi.

Aos Pesquisadores Drs. Samuel Almeida (MPEG), Yadvinder Malhi(Oxford Univ.

UK), Oliver Philips (Leds Univ., UK), Timothy R. Baker (Leeds Univ., UK), Antonio Carlos Lôla (UFPA) e Marcelo Tales(UAS/MPEG).

Aos colegas: Murilo, Rachel, Raquel, Heloise, Emanuele, Fabiana, Lissandra, Pedro, Patrícia, Geângelo, Sheron e Paulinho (UFPA).

Aos professores do Curso de Ciências de Florestas Tropicais: Drs. Gil Vieira, Paulo de

Tarso, Niro Higuchi, Joaquim dos Santos, João Ferraz, Isolde Ferraz, Luís Antônio,

Ricardo Marenco, José Francisco, Valdeney, Antenor e Adriano.

Às secretárias Ana Clycia (INPA) e Nilzilene C. Vale (MPEG).

Aos colegas de Mestrado das turmas de 2005 e 2007.

Aos trabalhadores da Estação Científica Ferreira Penna; Pão, Martins, Vigô e Joca.

Ao Racional Superior - Grão Mestre, que esteve do meu lado nas horas mais difíceis.

A todos que contribuíram direta ou indiretamente em todas as fases desta labuta.

Sem a participação de todos, não seria possível a realização deste trabalho.

Grato.

SUMÁRIO

LI	STA DE	FIGURAS.	•			•		•	•	•	vii
LI	STA DE	TABELAS.	•	•	•	•	•		•	•	ix
LI	STA DE	EQUAÇÕES				•			•		xi
RI	ESUMO		•	•	•	•	•		•		xii
Αŀ	BSTRAC	т .	•	•	•	•	•	•	•	•	xiii
1.	INTRO	DUÇÃO	•••••	•••••	•••••	•••••	•••••			•••••	1
2.	HIPÓT	ESES	•••••	•••••		•••••	•••••	•••••			3
3.	ORIET	IVOS									3
	•										
-	3.1 3.2	Geral Específicos									
4.		Especificos ÃO DE LITERA									
••											
4	4.1.	Crescimento									
		ariáveis ambien ariável intrínseca									
4	4.1.2 v a	Bandas dend									
	4.3.	Predição da									
	4.3.1.	Modelos de									
	4.3.1.1	l. A Cadeia de M	larkov ou	Matriz de	transição						11
5.	MATEI	RIAL E MÉTOD	00	•••••		•••••	•••••	•••••			13
	5.1.	Descrição da	área e	coleta o	de dado	os	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	13
	5.1.1.	Local do ex									
	5.1.2.	Vegetação o	e solos								15
	5.1.3.	Terra Preta									
	5.1.4.	Clima									
	5.1.5.	Coleta de da									
	5.2.	Base de dado									
	5.3. 5.3.1.	Análise estat									
	5.3.2.	Análise do j Análise da l									
			,	-			,	•			
		TADOS E DISC									
(6.1	Incremento I									
	6.1.1 6.1.2	Padrão de incre Padrão de incre									23
		A/FLONA Caxi									20
	6.1.3	Incremento mé									
		de (CDM), com		•	,	•			,		
(6.2	Predição da									
]	probabil	ístico de Mar									37
7.	CONCI	LUSÃO		•••••		•••••	•••••	•••••		••••••	43
8.	REFER	ÊNCIAS BIBLI	OGRÁF	ICAS		•••••	•••••	•••••			45
9.) I									
	ANEVO		••••••	••••••	•••••	••••••	••••••	••••••	••••••		54
1/1											71

LISTA DE FIGURAS

- Figura 1 Mapa de distribuição regional de biomassa na Amazônia, método de interpolação, onde: a) biomassa calculada para as 25 áreas b) base de dados de densidade da madeira e de área basal, ambos interpolados com mapas de solos.
- **Figura 2** Cinta dendrométrica proposta por Hall, 1944.
- Figura 3 Classificação dos modelos utilizados para florestas.
- **Figura 4** Mapa vetorial da área de abrangência da Floresta Nacional de Caxiuanã.
- **Figura 5** Banda dendrométrica segundo o protocolo do projeto PAN-AMAZONIA.
- Figura 6 Comparação entre espécies com estratégias de crescimento diferentes, quanto à densidade da madeira (DM) e o incremento periódico anual (IPA) do LA e da TPA respectivamente.
- Figura 7 Padrão de incremento médio mensal em diâmetro dos indivíduos do (LA) em relação a precipitação no período do experimento.
- **Figura 8** Padrão de incremento médio mensal em diâmetro dos indivíduos da (TPA) em relação a precipitação coletada no período do experimento.
- **Figura 9** Padrão de incremento médio mensal em diâmetro dos indivíduos da (TPA) por classes diamétricas em relação a média.
- **Figura 10** Padrão de incremento médio mensal em diâmetro dos indivíduos do (LA) por classes diamétricas em relação a média.
- Figura 11 Incremento periódico anual (IPA) por classe diamétrica da área de LA e de TPA, para efeito de comparação do incremento.
- **Figura 12** Padrão de incremento médio mensal em diâmetro e precipitação média de uma série histórica de 20 anos de coleta na FLONA Caxiuanã/PA.
- Figura 13 Padrão de incremento médio mensal em diâmetro (LA) e precipitação média de uma série histórica de 20 anos de coleta na FLONA Caxiuanã/PA.
- Figura 14 Padrão de incremento médio mensal em diâmetro (TPA) e precipitação média de uma série histórica de 20 anos de coleta na FLONA Caxiuanã/PA.

- **Figura 15** Distribuição diamétrica em relação às classes de densidade da madeira em $(g \cdot cm^{-3})$, da área de TPA.
- **Figura 16** Distribuição diamétrica em relação às classes de densidade da madeira em $(g \cdot cm^{-3})$, da área de LA.
- Figura 17 Distribuição diamétrica observada e esperada para a área de TPA.
- Figura 18 Distribuição diamétrica observada e esperada para a área de LA.

LISTA DE TABELAS

- **Tabela 1** Equações que estimam o incremento periódico (1987-1992) por grupo de espécie para florestas semidecíduas montanas.
- Tabela 2 Composição química média de solos tipos TPA e Latossolo Amarelo (LA) em
 Caxiuanã, PA.
- **Tabela 3** Intervalos de classe da densidade da madeira.
- **Tabela 4** Análise de variância (ANOVA) para as classes diamétricas no LA.
- **Tabela 5** Matriz de probabilidades do teste da diferença mínima significativa (DMS) de Fischer para o IMM entre as classes diamétricas no LA.
- **Tabela 6** Análise de variância (ANOVA) entre as classes diamétricas na TPA.
- Tabela 7 Matriz de probabilidades do teste da diferença mínima significativa (DMS) de
 Fischer para o IMM entre as classes diamétricas na TPA.
- Tabela 8 Dados de precipitação pluviométrica mensal (mm) da série histórica 1980-2000, coletados na FLONA Caxiuanã, para efeito de comparação com os dados coletados no período de 2004 2006.
- Tabela 9 Análise de Variância para medições repetidas dentro das classes de diâmetro,
 densidade da madeira e suas interações, na área de LA.
- **Tabela 10** Análise de Variância para medições repetidas dentro das classes de diâmetro, densidade da madeira e suas interações, na área de TPA.
- **Tabela 11** Análise de variância (ANOVA) entre as classes de densidade da madeira na TPA.
- **Tabela 12** Teste da diferença mínima significativa (DMS) do IMM entre as classes de densidade da madeira na TPA.
- **Tabela 13** Matriz de probabilidades do teste da diferença mínima significativa (DMS) de Fischer para o IMM entre as classes de densidade da TPA.
- **Tabela 14** Análise de variância (ANOVA) entre as classes de densidade da madeira no LA.
- **Tabela 15** Teste da diferença mínima significativa (DMS) do IMM entre as classes de densidade da madeira no LA.

- **Tabela 16** Matriz de probabilidades do teste da diferença mínima significativa (DMS) de Fischer para o IMM entre as classes de densidade do LA.
- **Tabela 17** Transição de estados por classes diamétricas (cm), durante o período de 2004 a 2006 na área de TPA.
- **Tabela 18** Freqüência observada (2004 e 2006) e projetada (2008) de árvores vivas e mortas, por classe diamétrica e valores de Qui-quadrado (.χ²_{cal}) na TPA.
- **Tabela 19** Transição de estados por classes diamétricas (cm), durante o período de 2004 a 2006 na área de LA.
- **Tabela 20** Frequência observada (2004 e 2006) e projetada (2008) de árvores vivas e mortas, por classe diamétrica e valores de Qui-quadrado (χ^2_{cal}) no LA.

LISTA DE EQUAÇÕES

- Equação 1 (E1) Equação da representação literal da Matriz de probabilidade de Markov.
- Equação 2 (E2) Equação matricialde probabilidades de Markov.
- Equação 3 (E3) Equação da Gravidade Específica da Madeira (densidade em g/cm³).
- Equação 4 (E4) Ajustes do grau de liberdade, de Greenhouse-Geisser & Huynh-Feldt.
- Equação 5 (E5) Modelo linear univariado da ANOVA para medidas repetidas.
- Equação 6 (E6) Equação do Teste de Correlação de Pearson (r).
- Equação 7 (E7) Teste (z) e Teste de student (t).
- Equação 8 (E8) Equação do cálculo do quiquadrado (X2).

RESUMO

No Manejo florestal é fundamental que saibamos planejar as atividades de exploração, fundamentados em ferramentas estatísticas, para que diminuam as margens de erro relacionadas às tomadas de decisão. O conhecimento à cerca de informações sobre padrão de crescimento e projeção da distribuição diamétrica otimiza o processo de produção. Essas técnicas dendrométricas prescrevem, de forma segura, os tratos silviculturais e fornecem informações mais precisas sobre o ciclo de corte. O presente estudo enfatiza essas duas ferramentas com o objetivo de verificar o padrão de crescimento e a estrutura diametral futura em dois tipos de ecossistema: i) Floresta de terra-firme sobre latossolo amarelo (LA) e ii) Floresta sobre terra preta antropogênica (TPA) na FLONA de Caxiuanã,. Estado do Pará. Em cada ecossistema foram selecionados aleatoriamente 400 árvores de um banco de dados do projeto PAN-AMAZONIA, com intervalo de classes para diâmetro variando entre $10 \le DAP$ \geq 50 cm, e para densidade da madeira variando entre 0 < DM < 2. Os dados de crescimento diamétrico foram obtidos com bandas dendrométricas instaladas em todas as árvores inventariadas com DAP ≥ 10 cm, durante um período de dois anos (2004-2006). O padrão de crescimento nas duas áreas segue paralelamente a sazonalidade dos efeitos climáticos, sendo o incremento médio mensal (IMM) na parcela de TPA igual a 6,82 mm + 0,042 mm (IC 95%) e na parcela LA igual a 1,108 mm + 0,08 mm (IC 95%). A correlação entre as variáveis incremento e precipitação apresentou-se baixa, porém positiva e significante a 1%, na TPA (r = 0.25; p<0.001) e no LA (r = 0.26; p<0.001). Utilizando a série histórica (1980-2000) de precipitação fornecida (IBAMA), houve uma filtragem das variações bruscas ocorridas durante os dois anos de experimento, diminuindo a discrepância com os dados de incremento, resultando em valores para TPA (r = 0.80; p<0.001) e LA (r = 0.76; p<0.001). As interações geradas pelo modelo da ANOVA-MR para a TPA e LA mostraram que o IMM varia consideravelmente com o tempo (G-G<0,001), não houve relação significativa entre a densidade da madeira e o IMM nas duas áreas (G-G=0,653; G-G=0,095) respectivamente e a classe diamétrica influenciou-o a 5% de probabilidade somente no LA (G-G=0,001). O modelo da Cadeia de Markov projetou a estrutura diamétrica das duas áreas nos anos de 2004-2006 para 2008, onde a distribuição diamétrica observada e projetada tanto no LA (χ^2_{tab} $_{(\alpha=0,01; 9 \text{ gl})} = 21,7; \chi^2_{\text{calc}} = 5,6)$ como na TPA $(\chi^2_{\text{tab}})_{(\alpha=0,01; 9 \text{ gl})} = 21,7; \chi^2_{\text{calc}} = 1,9)$.ajustaram-se perfeitamente ao modelo com apenas dois anos de medições e em condições de florestas tropicais.

ABSTRACT

In forest management it is fundamental that those in charge know how to plan the logging activities grounded on statistical tools so they can diminish error margins in important decision making situations. Knowledge about informations of growth pattern and diameter distribution projection leads to optimization of the production process. It is so because those dendrometer-based techniques point to the moment of intervention on the forest with prescription of sound silvicultural activities and give more precise information about the logging cycle. This present work emphasizes both those tools aiming at assessing growth pattern and future diameter structure in two kinds of ecosystem: i) a non-flooded yellow latossol (LA, yellow oxisol) and ii) terra preta antropogênica (TPA, athropogenic dark earth) at FLONA Caxiuana/PA. 400 trees were randomly selected from a database from project PAN-AMAZONIA in each ecosystem, by 5 diameter classes (DM) and 3 wood density classes (CDM). Growth data were gathered by fixation of dendrometer bands in all the trees within the inventary with DBH > 10 cm, during a period of two years (2004-2006), recording circumference increment monthly (IMM monthly mean increment) with an analogical caliper. Growth patterns on both areas follow paralally weather seasonality, with a IMM on TPA of 6,82mm + 0,042mm (CI 95%) and on LA of 1,108 mm + 0,08mm (CI 95%). Correlation between the variables increment and precipitation was low, but positive and significant at 1% in the TPA (r = 0.25; p<0.001) and in the LA (r = 0.26; p<0.001). When precipitation historical series (1980-2000) handed by IBAMA are used the following values were found for the TPA (r=0.80; p<0.001) and LA (r=0.76; p<0.001). Discarding harsh variations that occured throughout both years diminished discrepancies with increment data. Interactions produced by the ANOVA-MR for the TPA and LA show that IMM varies considerably with time passage (G-G:<0,001), wood density did not influence IMM on either site (G-G=0,653; G-G=0,095), respectively, and diameter class influenced only LA at 5% probability (G-G=0,001). The Markov chain model projected a diameter structure on both sites for a two years interval (2004-2006 to 2008), where the diameter distribution observed and projected for the LA (χ 2tab (α =0,01; 9 gl) = 21,7; χ 2calc = 5,6) as for the TPA (χ 2tab (α = 0,01; 9 gl) = 21,7; χ 2calc = 1,9) were perfectly fitted to the model with only two years of measurement and under tropical forest conditions.

1. INTRODUÇÃO

O avanço do conhecimento acerca dos processos que envolvem grandes sistemas, como floresta e clima, é de extrema importância para a manutenção da estabilidade na biosfera, pois estão diretamente correlacionados. O homem é parte integrante e ator principal, pois sua influência como consumidor e transformador dos recursos naturais pode gerar efeitos que tanto podem favorecer como ameaçar a sua própria existência. O exemplo disso são os recentes resultados no relatório do Painel Intergovernamental de Mudanças Climáticas (*Intergovernamental on Climate Change* – IPCC, 2007) sobre as projeções nada animadoras dos efeitos da ação antrópica sobre o clima global.

A conservação de florestas tropicais em conexão com a proteção da atmosfera e a conservação da biodiversidade é um dos mais importantes desafios ecológicos dos nossos tempos. Ecossistemas de florestas tropicais desempenham papel importante nas trocas de carbono entre a biosfera e a atmosfera, influenciando inclusive na manutenção do ciclo hidrológico global. Isto supõe que o desmatamento nos trópicos produz mudanças climáticas globais, os quais por sua vez têm influência sobre o crescimento da floresta (Worbes, 2001).

As florestas tropicais de alta diversidade biológica estão entre os mais complexos ecossistemas florestais. Qualquer sistema florestal é composto por componentes físicos (climáticos, edáficos, topográficos entre outros) e por componentes biológicos (animais e plantas). A integração ou independência mútua destes componentes dificulta a compreensão do funcionamento do sistema como um todo (Moscovich, 2004).

A complexidade, das múltiplas relações das florestas nativas, desaqfiam a comunidade científica no que concerne à intensa busca sobre o crescimento das plantas, tanto em áreas intactas como em áreas exploradas, com ou sem regime de manejo florestal conduzido sob técnicas aceitáveis (Scolforo *et al.*, 1996). O entendimento da dinâmica da floresta primária é essencial para prescrição mais confiável de tratamentos silviculturais. Da mesma forma esse conhecimento é igualmente importante para estabelecer estratégias de conservação do ecossistema (Higuchi *et al.*, 2000).

Por sua vez a definição do ciclo de corte em florestas sob regime de exploração, é uma informação importante para o manejo de florestas nativas, assim como o conhecimento de como o número de árvores por classe de diâmetro evolui ao longo do tempo (Scolforo *et al.*,

1996). Naturalmente que muitos outros aspectos são bastante relevantes para que as florestas naturais possam ser utilizadas em bases sustentáveis como, por exemplo: i) suscetibilidade das espécies florestais a exploração; ii) economicidade do manejo sustentado; iii) maior eficiência no processo de beneficiamento e aproveitamento da madeira; iv) racionalização das técnicas de exploração, armazenamento e transporte.

Portanto o domínio de técnicas que garantam o manejo sustentável das florestas tropicais e o crescente avanço das pesquisas, acaba por oferecer informações confiáveis sobre o crescimento e produção florestal, onde formas alternativas de projeção do crescimento e da produção florestal devem ser consideradas como de real importância no contexto do manejo florestal, capaz de garantir subsídios ao planejamento em longo prazo (Mendonça, 2003).

Nesse sentido o padrão de crescimento de essências florestais e a projeção do desenvolvimento da população arbórea, ambos baseados no incremento médio, permite que os recursos sejam mais bem administrados, pois é com esta informação que o manejador poderá melhorar o seu planejamento para uma futura exploração, caso contrário acarretará sérios problemas em escala global, levando à insustentabilidade da atividade florestal.

Várias iniciativas científicas têm sido implementadas visando estabelecer experimentos em escala global, com isso, o projeto PAN-AMAZONIA, intencionalmente, implantou duas parcelas de 1ha cada, uma em floresta de terra-firme com latossolo amarelo e a outra em Terra Preta Antropogênica (TPA), a fim de comparar com outras parcelas que foram instaladas na Amazônia (Peru, Bolívia, Equador e Colômbia) em parceria com o grupo de trabalho do projeto RAINFOR. A estrutura de algumas espécies presentes na Terra -preta antropogênica (TPA) foi de fato um dos principais questionamentos a respeito da interação variáveis ambientais Vs. floresta, sendo que no passado houve interferência humana nesta área, apresentando indícios da ocupação indígena.

Tratando-se de uma Unidade de Conservação, a Floresta Nacional de Caxiuanã (FLONA Caxiuanã) é mais uma importante e representativa parcela da floresta ombrófila densa da Amazônia Oriental. Tentar entenderr como a dinâmica florestal se comporta nesta área, fornecerá valiosa ferramenta para administrar os recursos florestais madeireiros e não-madeireiros. Isso se torna imprescindível do ponto de vista da subsistência dos povos que habitam este território, bem como a conservação dos recursos genéticos e os serviços ambientais que a floresta realiza.

2. HIPÓTESES

As seguintes hipóteses foram testadas:

- I. O crescimento diamétrico não se correlaciona com a precipitação pluviométrica (chuvas);
- II. O padrão de crescimento diamétrico independe da classe diamétrica (CD), do tempo (T) e da variável densidade básica da madeira (CDM).
- III. Os dados observados n\u00e3o se ajustam ao modelo probabil\u00edstico da cadeia de Markov para um per\u00edodo de dois anos.

3. OBJETIVOS

3.1 Geral

Analisar o padrão de crescimento diamétrico arbóreo de diferentes espécies, correlacionando-o com a variável ambiental precipitação pluviométrica e com a variável inerente densidade básica da madeira, realizando também a predição do comportamento da dinâmica florestal, analisando a estrutura diamétrica por meio da cadeia de transição probabilística de Markov.

3.2 Específicos

- Correlacionar o incremento médio mensal (IMM) com a sazonalidade da variável ambiental precipitação pluviométrica;
- Avaliar se o incremento médio mensal está associado as classes diamétricas.;
- Utilizar a cadeia de transição probabilística de Markov, no intuito de predizer o comportamento da estrutura diamétrica da população nas áreas estudadas.

4. REVISÃO DE LITERATURA

4.1. Crescimento diamétrico

4.1.1 Variáveis ambientais

O crescimento é o alongamento e expansão das raízes, troncos e galhos, provocando mudanças em termos de altura, volume e forma. O crescimento linear de todas as partes da árvore resulta da atividade do meristema primário, enquanto que o crescimento em diâmetro é uma conseqüência da atividade do meristema secundário ou câmbio (Husch *et al.*, 1982).

O crescimento das árvores é influenciado pelas características da espécie interagindo com o ambiente. As influências ambientais incluem fatores climáticos (temperatura, umidade do ar, precipitação e irradiância), fatores edáficos (características físicas e químicas, umidade e microorganismos), características topográficas (inclinação e elevação) e competição (influências intra e interespecíficas, sub-bosque e animais) (Husch *et al.* 1982), onde estes fatores apontam para o conceito de qualidade de sítio (Prodan *et al.*, 1997). Porém, em um estudo utilizando bandas dendrométricas com espécies de terra-firme, realizado na Amazônia central, verificou-se que havia fraca interação entre o crescimento individual de árvores e as classes topográficas platô, encosta e baixio (p=0,246), apesar de existirem diferentes tipologias edáficas em cada classe (Silva *et al.* 2003).

A água é a substância inorgânica mais importante entre os fatores de interação com as plantas, principalmente pelo fato de estar presente em grande parte de sua estrutura. A precipitação é a maior fonte de umidade do solo e a principal fonte de água que a árvore dispõe. Quando o solo seca, a fotossíntese gradualmente diminui aumentando a resistência à fixação do CO₂ por causa do fechamento dos estômatos para controlar o déficit hídrico (Silva *et al.*, 2003).

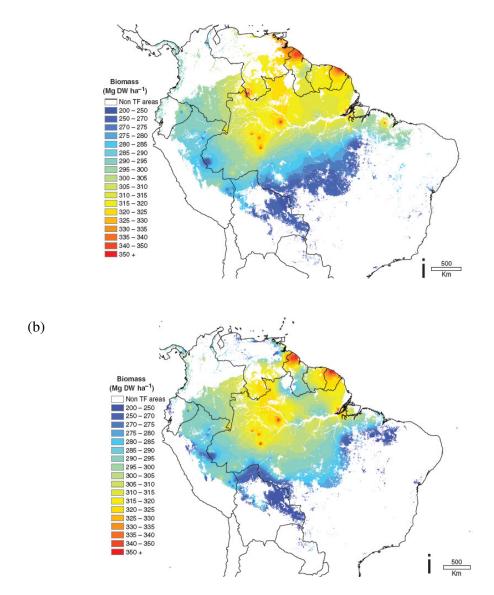
O clima é um fator ambiental essencial para o crescimento de árvores. A sazonalidade da precipitação e da temperatura é imprescindível para explicar o crescimento em diâmetro de árvores em uma floresta. Esses fatores influenciam no desenvolvimento de indivíduos de maneira diferente, dependendo da espécie em questão, da região geográfica, entre outros fatores (Holdaway, 1987).

4.1.2Variável intrínseca densidade da madeira

A densidade da madeira é uma variável chave em pesquisas relacionadas ao ciclo do carbono (Chave *et al.*, 2006). Reyes *et al.* (1992) e Fearnside (1997) têm relatado a necessidade de desenvolver uma base de dados de densidade da madeira para estimar biomassa de florestas tropicais nos estudos sobre seqüestro de carbono e de mitigação da emissão dos gases do efeito estufa.

Dentre as principais propriedades físicas da madeira, seja ela serrada ou *in situ*, estão a massa específica (densidade em g.cm⁻³) e a variação dimensional, que é a contração e inchamento em função do teor de umidade, um dos principais fatores que colaboram com as variações na medição de diâmetros para prescrever taxas de incremento em pesquisas de monitoramento de longo prazo.

A densidade básica da madeira é uma característica particular de cada espécie, embora possa variar de acordo com a posição da amotra na árvore. É uma variável interessante porque informa sobre a quantidade de carbono que a planta destina ao custo de construção de suas estruturas reprodutivas e/ou vegetativas. Ela varia dentro da planta, durante a vida da planta e entre os indivíduos de uma mesma espécie. Alem disso, os ramos e as partes exteriores do tronco tendem a apresentar densidades de madeira mais baixas que o cerne (Chave, 2006).


Devido a esta grande variação nas características físicas da madeira, torna-se imprescindível verificar o quanto a densidade básica da madeira poderá influenciar nas análises propostas no presente estudo, pois a umidade relativa do ar, a temperatura e a água livre, podem influenciar diretamente na densidade da madeira, visto a relação teor de umidade da madeira e densidade serem inversamente proporcionais (FPL, 1999)

Bhaskar e Ackerly (2006), estudando as espécies M. $lingua\ e\ X$. aromática, verificou que elas apresentaram maiores potenciais hídricos (ψ) e menores área foliar específica (AFE), como conseqüência da menor densidade de madeira e maiores diâmetros dos vasos, que resultam em menor resistência hidráulica e maior propensão à cavitação.

A densidade da madeira, especificamente em espécies florestais é influenciada por vários fatores, tais como a temperatura, a umidade do solo, o tipo de solo e pela latitude e altitude (Roderick, 2001; Hansmann *et al.*, 2002).

Em Malhi *et al.* (2006), num mapa sobre a variação regional da biomassa na floresta amazônica, originado da base de dados do projeto RIANFOR e de mapas de fertilidade de

solos, mostra a maior alocação de fitomassa nas áreas inventariadas ao noroeste da bacia amazônica, diferentemente do que ocorre ao Sul da bacia, onde esses valores diminuíram consideravelmente.

Figura 1 - Mapa de distribuição regional de biomassa na Amazônia, método de interpolação, onde: a) biomassa calculada para as 25 áreas b) base de dados de densidade da madeira e de área basal, ambos interpolados com mapas de solos.

4.2. Bandas dendrométricas

Os dendrômetros permitem monitorar o crescimento em circunferência do tronco das árvores, registrando os períodos de atividade do câmbio, por conseguinte, fornecendo informações a respeito do ritmo de crescimento influenciado diretamente por variáveis climáticas (Kätsch *et al.*, 1992).

As bandas dendrométricas servem para mensurar o incremento em diâmetro, que é uma característica derivada da atividade cambial. Melhores resultados são atingidos com bandas de metal ou de fibras sintéticas. Durante períodos secos os troncos freqüentemente apresentam um "decréscimo" que na verdade é uma leve redução do tronco originado da perda d'água, diminuindo a pressão intracelular (Vanclay, 1994).

A necessidade de se obter dados mais precisos sobre incremento sazonal, total para um determinado período de tempo e a proporção de crescimento no decorrer das estações, foi apresentada por Hall (1944). O instrumento consiste de uma fita de alumínio graduado que circula a árvore, permanecendo fixa firmemente no tronco por meio de uma mola espiral. A cinta desenvolvida por ele foi graduada em polegadas e décimos de polegada, provida de um "vernier" para permitir a leitura, como mostra a Figura 2.

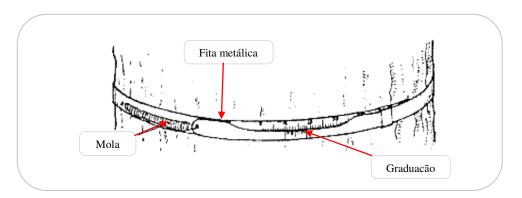


Figura. 2 – Cinta dendrométrica proposta por Hall, 1944.

Bower e Blocker (1966) realizaram estudos sobre a precisão das medições do incremento diamétrico utilizando bandas dendrométricas e fitas. Segundo esses autores, as bandas são confiáveis para medições em curtos períodos de tempo, mas terão que ser instaladas um ano antes do período em que foram realizadas as medições, uma vez que as bandas tendem a superestimar o crescimento diamétrico no primeiro ano de avaliação. Todavia, essa subestimativa poderia ser devido a um reduzido incremento, principalmente em regiões com estações anuais bem definidas (Keeland e Sharitz, 1993).

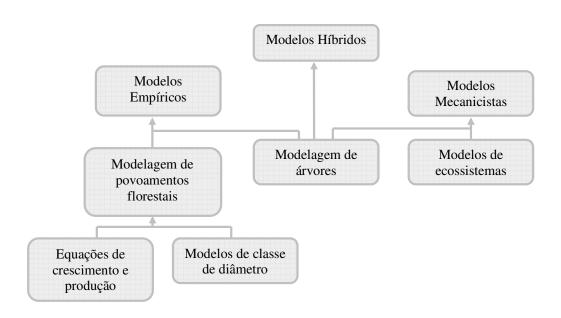
As bandas dendrométricas modificadas a partir do modelo de fita metálica, têm sido empregadas por diversos pesquisadores. Na África e na Guiana Francesa, Mariaux (1969, 1970) e Détienne (1976, 1989) utilizaram bandas dendrométricas de aço para estudar o ritmo, a taxa de crescimento e a periodicidade dos anéis de crescimento de árvores tropicais; na Malásia, com estudos sobe o crescimento em diâmetro em 25 espécies folhosas decíduas com dendrômetros de aço, Komiyama *et al.* (1987); Jalil *et al.* (1998) determinaram a periodicidade do crescimento de *Hevea brasiliensis* com dendrômetro de alumínio. Na Amazônia brasileira, Vetter e Botosso (1988) e Botosso *et al.* (2000) determinaram a periodicidade e a taxa de crescimento do tronco de árvores tropicais com bandas dendrométricas de aço. Silva *et al.* (2002) utilizaram bandas dendrométricas de aço para definir padrões de crescimento individual de árvores da bacia do rio Cuieiras na Amazônia Central. Bandas dendrométricas de aço também foram utilizadas para obter o balanço de carbono e dinâmica da vegetação na Floresta Nacional do Tapajós, Rice *et al.* 2004,.

O emprego de bandas dendrométricas é muito útil em inventários florestais, onde um conjunto de árvores com diferentes diâmetros podem ser avaliadas através do tempo (López-Ayala *et al.*, 2006). Por esta metodologia é possível detectar pequenas mudanças de diâmetro nos intervalos de medição (Baker *et al.*, 2002). Estas bandas se ajustam à forma do tronco da árvore (Clarck *et al.*, 2000), porém Prodan *et al.* (1997) observaram que em árvores com muitos sulcos, há uma superestimação sistemática do diâmetro. Fritts *et al.* (1965) afirmam que troncos com alta umidade, provenientes de mudanças de umidade na casca e xilema, apresentam incremento considerável em diâmetro, conseqüência da atividade cambial e expansão celular.

4.3. Predição da estrutura

Inventários florestais fornecem informações relacionadas a determinado instante de tempo, relatadas de forma estatística. Os modelos de crescimento e produção são capazes de descrever a dinâmica da floresta (recrutamento, crescimento e mortalidade) ao longo do tempo. Por conseqüência, os modelos são usados amplamente no manejo devido à possibilidade em atualizar inventários, predizer a produção futura e explorar alternativas de manejo e opções silviculturais, fornecendo informações para a tomada de decisões (Burkhart, 1990; Vanclay, 1994; Peng, 2000).

Diversos métodos foram testados para mensurar as taxas de crescimento de árvores tropicais (Worbes, 2000). Estes métodos são geralmente muito complicados, consomem tempo ou não são muito precisos. Atualmente existe um método direto e três indiretos, sendo um por datação e taxas de crescimento de espécies tropicais e dois que fornecem cálculos aproximados de produção de biomassa de florestas, como exemplo: por datação por meio de radiocarbono (Camargo *et al.*, 1994), estimativa da idade por medidas repetidas de diâmetros (Lieberman *et al.*, 1985a), por uma aproximação matemática baseada em estimativas da taxa de mortalidade (Condit *et al.*, 1995) e a contagem de anéis de crescimento (Mariaux, 1969).


4.3.1. Modelos de crescimento

Desde os primeiros modelos matemáticos desenvolvidos a partir de 1960, observa-se crescente a base de informações sobre modelagem do crescimento e produção de florestas com diferentes estágios sucessionais. A sofisticação desses modelos tem crescido em razão de vários fatores, incluindo técnicas estatísticas refinadas, expansão da base de dados e uso dos recursos computacionais. A metodologia da modelagem para as florestas ineqüiâneas e mistas tem incorporado uma variedade de técnicas como: regressão linear, sistema de equações, projeção de Tabelas do povoamento, cadeias de Markov e rede neural artificial (Vaccaro *et al.*, 2003).

Se for levada em consideração a hierarquia dos modelos, estes se distinguem em: modelos de gerenciamento florestal, de povoamento, de classe de diâmetro e de árvores individuais (Vanclay, 1994). Os modelos de distribuição diamétrica são os mais comuns, e se baseiam em funções probabilísticas de distribuição, permitindo descrever as alterações na estrutura do povoamento (número de árvores por classe diamétrica), nas relações hipsométricas e nas taxas de mortalidade, podendo todas estas características serem analisadas, simultaneamente, ao longo do tempo. Nesse tipo de modelo destacam-se: i) As Tabelas de povoamento ou produção, nas quais se encontram o método da razão de movimentação e o método de Wahlenberg; ii) Os modelos estocásticos de crescimento em diâmetro, em que se tem a matriz de transição(Austregésilo *et al.*, 2004).

Esses modelos são intermediários entre os modelos de povoamento total e os de árvores individuais, e podem fornecer informações suficientes para o manejo de florestas naturais inequiâneas, sem a complexidade inerente aos modelos de árvores individuais. Os modelos de classe de tamanho incluem projeção de Tabelas de povoamento, matrizes de transição e modelos de corte (Austregésilo *et al.*, 2004).

As florestas podem ser modeladas tanto individualmente como em povoamento, tais modelos são direcionados em duas linhas gerais de estudo: a modelagem empírica é a base da modelagem utilizada em manejo florestal e a mecanicista sendo mais direcionada para pesquisas (Figura 3) (Peng, 2000).

Figura 3. Classificação dos modelos utilizados para florestas (adaptado de Peng, 2000).

Com a utilização dos valores de crescimento diamétrico periódicos, para grupos de espécies como: a) comerciais; b) espécies clímax exigentes de luz; c) espécies clímax tolerantes à sombra; d) espécies frutíferas e e) espécies pioneiras; alcança-se pelo método "Stepwise", a composição de modelos que expressem o comportamento do incremento periódico em relação às classes de diâmetro, a transição de uma classe à outra, a idade para cada diâmetro e o ciclo de corte, conforme apresentado na Tabela 1 (Scolforo *et al.*, 1996).

Tabela 1 - Equações que estimam o incremento periódico (1987-1992) por grupo de espécie para florestas semidecíduas montanas (Scolforo *et al.*, 1996).

Grupo de espécie	Equações	r ² (%)	S _{YX} (ln/cm)
Mata toda	ln (IP)=0,037847CLD-0,000298CLD ²	93,3	0,263
Espécies comerciais	ln (IP)=0,0304 CLD -3,676286E-8CLD ⁴	92,2	0,305
Espécies clímax exigentes de luz	$ln(IP)=0.03319CLD-2.525192E-6 CLD^3$	95,2	0,253
Espécies clímax tolerantes à sombra	$ln(IP)=0.054064 CLD-0.000432 CLD^2$	90,0	0,424
Espécies frutíferas	$ln(IP)=0.056958CLD-0.000559CLD^2$	95,1	0,276
Espécies pioneiras	$ln(IP)=0.073848CLD-0.000679CLD^2$	96,6	0,249

In = logaritmo na base **e**; **CLD** = valor central da classe de diâmetro; **IP** = incremento periódico (1987-1992); **r**² = coeficiente de determinação; **Syx** = erro padrão da estimativa (ln/cm).

4.3.1.1. A Cadeia de Markov ou Matriz de transição

A matriz de transição é um processo estocástico de predição utilizado para estudar fenômenos que passam, a partir de um estado inicial, por uma sequência de estados sem levar em consideração os estados anteriores, onde esta transição entre estados ocorre de acordo com uma probabilidade (Arce *et al.*, 2001).

A palavra estocástico deriva do grego e significa aleatório ou chance. O antônimo é determinístico ou certeza. Um modelo determinístico prediz um simples resultado proveniente de um conjunto de circunstâncias. Um modelo estocástico realiza a predição de um conjunto de resultados possíveis por meio de probabilidades e são caracterizados pelas relações de dependência que existe entre suas variáveis (Cunha, *et al.*, 2002).

Dentre os modelos de crescimento e produção por classe diamétrica, a Cadeia de Markov ou Matriz de Transição é um importante instrumento para viabilizar a prognose da produção em florestas nativas (Scolforo, 1998).

A prognose a partir deste método é feita por meio da estimativa da probabilidade de transição dos diâmetros entre classes diamétricas, ou seja, suas projeções para o futuro, a partir da matriz de probabilidade de transição. Essas projeções não devem ser realizadas para períodos de tempo longos, haja vista que o desempenho dos modelos é condicionado a dois pontos básicos: um considera que o incremento periódico em diâmetro das árvores da floresta, obtido nas parcelas permanentes, tenha o comportamento no futuro idêntico ao obtido por ocasião das avaliações realizadas nas parcelas permanentes. Neste caso, assume-se que apesar de mudanças em sua estrutura, a floresta continuará no futuro a apresentar o mesmo crescimento que aquele detectado por ocasião da avaliação das parcelas permanentes, sendo denominada de transição estacionária.

Um segundo ponto básico é que a projeção da estrutura da floresta depende somente do estado atual, não absorvendo efeito de qualquer característica passada da floresta. Esta característica ou propriedade do modelo considerado é definida como propriedade Markoviana ou efeito "memory-less" (Scolforo, 1998).

A matriz de transição é uma ferramenta que cientístas e técnicos da área florestal podem recorrer para prognosticar o recrutamento, a mortalidade e o estoque por classe diamétrica de uma floresta inequiânea ao longo do tempo. Sua representação matemática pode ser escrita como:

$$A \cdot E_0 + R = E_1 \tag{E1}$$

Onde: (A) é a matriz de transição que contém probabilidades de uma árvore mudar de classe diamétrica por meio do crescimento; (E_0) é o vetor de estoque inicial, ou seja, a distribuição diamétrica antes da predição; (R) o vetor de recrutamento; (E_1) o vetor de estoque no momento um, no tempo de predição futuro (Sanquetta *et al.*, 1996) e pode ser montada da seguinte maneira.

Nesta matriz as probabilidades P_{ij} são obrigatoriamente positivas e a soma de P_{i1} + P_{i2} + + P_{im} , deve ser igual a 1.

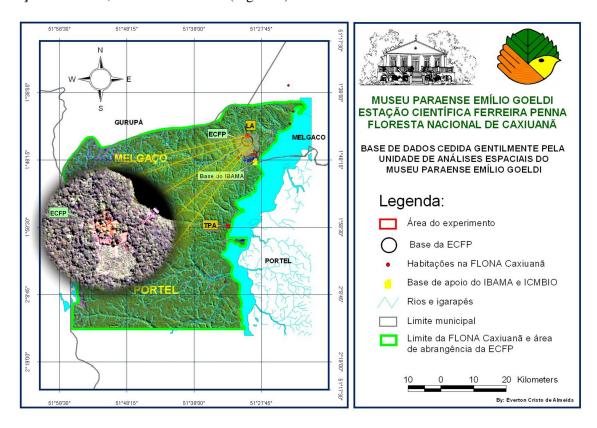
O entendimento a respeito da dinâmica florestal, em relação ao incremento diamétrico, por meio de simulações desenvolvidas com matrizes de transição, é um passo importante para viabilizar a prognose da produção de florestas nativas (Mendonça, 2003).

Estudos utilizando matriz de transição foram desenvolvidos por alguns pesquisadores como: Usher (1966), Bruner e Moser Jr. (1973), Peden *et al.* (1973), Buongiorno e Michie (1980) e Robert e Hruska (1986). Em regiões tropicais, por exemplo, pode-se citar Enright e Ogden (1979), Osho(1991) e Vanclay (1994). No Brasil, foi estudado por Higuchi (1987), Azevedo *et al.* (1994), Sanquetta *et al.* (1996a, 1996b), Scolforo (1997), Pulz *et al.* (1999), Arce *et al.* (2001), Spathelf e Durlo (2001). No Estado do Amazonas, em uma área de floresta de terra-firme, Higuchi (1987) e Freitas e Higuchi (1993), utilizaram a Cadeia de Markov dentro do manejo florestal como instrumento para elaboração de uma Tabela de produção futura e um possível ciclo de corte, obtendo resultados satisfatórios para a prognose da produção em florestas nativas, mesmo com toda a dinâmica climática da região.

Como condicionantes da utilização da matriz de transição, as taxas de transição – probabilidades convertidas em percentagens – terão que ser homogêneas, isto é, as taxas de transição permaneceram constantes durante o período a ser prognosticado. Considerando-se que a análise será feita enfocando aspectos evolutivos, assume-se etão, que as taxas de ingresso e mortalidade são constantes e iguais a zero (Cunha, *et al.*, 2002).

Portanto, entender como se comportam as taxas de crescimento, recrutamento e mortalidade, na floresta intacta ou submetida a intervenção, é essencial para determinar quanto tempo uma ou um grupo de espécies levará para atingir uma determinada dimensão ótima para o manejo florestal, onde esta relação poderá também definir o ciclo de corte, afim de prescrever tratos silviculturais adequados, bem como a resposta da floresta a esses tratos (Teixeira, *et al.*, 2007).

5. MATERIAL E MÉTODO


5.1. Descrição da área e coleta de dados

5.1.1. Local do experimento

O sítio experimental foi estabelecido na Floresta Nacional de Caxiuanã (01°42′24.09"S, 51°27′34.35" W), localizada nos municípios de Melgaço e Portel, no Estado do Pará, 400 km a oeste de Belém, limitada ao norte pelo município de Breves, ao sul pelo município de Portel, a oeste aos municípios de Porto de Moz e Gurupá e a leste pelos municípios de Breves e Bagre. Inserida na mesma mesorregião do Marajó, encontra-se o município de Breves, um dos pólos exportadores de madeireira mais antigos e importantes do

Pará, onde a exploração é realizada tanto pelas grandes serrarias estabelecidas próximas a sede do município, bem como pelos ribeirinhos que utilizam métodos convencionais de exploração como forma de subsistência.

A FLONA caracteriza-se por apresentar ambientes naturais bem conservados e com baixa densidade demográfica. Neste cenário, foi implantada a Estação Científica Ferreira Penna (ECFP), uma base de pesquisa do Museu Paraense Emílio Goeldi (MPEG), inaugurada em 1993, com infra-estrutura voltada à produção científica, por um período prorrogável de 30 anos sob regime de Comodato. A concessão foi realizada pelo Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Na época, eram utilizados apenas 10% da FLONA, que possui 330.000 ha. Atualmente, a autonomia do (MPEG), através das ações da ECFP, é de 100% da área (Figura 4).

Figura 4 – Mapa base da área de abrangência da Floresta Nacional de Caxiuanã, municípios de Melgaço e Portel, Pará.

5.1.2. Vegetação e solos

A Floresta Nacional de Caxiuanã agrega ecossistemas riquíssimos em espécies vegetais, o que a caracteriza como uma zona que abrange vários ambientes, dentre eles a floresta densa de terra firme, várzea e igapó com o registro de centenas de taxa (Almeida *et al.*, 1993).

A floresta de terra firme ocupa cerca de 85% da área onde foi implantada a ECFP. Apresenta relevo relativamente plano com predominância do latossolo amarelo, profundo e de origem terciária, tendo como características marcantes a acidez, solos argilo-arenosos e bastantes vulneráveis à erosão laminar. Este ambiente apresenta uma arquitetura florestal constituída de árvores emergentes (40 a 50m), dossel (30 a 35m), sub-dossel (20 a 25m) e sub-bosque (5m). Possui grande diversidade de espécies por hectare (150 a 160 espécies) e densidade de indivíduos variando de 450 a 550 árvores por hectare. É uma floresta bastante densa e úmida, com até 10% de abertura do dossel, dificultando o aparecimento de espécies com maior necessidade de luz, por exemplo, lianas (cipós). Apresenta boa visibilidade no sub-bosque, com estrato arbustivo disperso e poucas palmeiras (Almeida *et al.* 1993; Lisboa *et al.* 1997).

A floresta de igapó está, aproximadamente, a 20 m acima do nível do mar, apresentando características particulares por sofrer inundação causada por rios de águas pretas que mantém o solo constantemente encharcado e em alguns períodos do ano alagado. Seu relevo é levemente ondulado e o solo é ácido, formado por hidromorfismo, pobre em nutrientes, devido principalmente à ausência de sedimentos nas águas escuras dos rios da bacia de Caxiuanã. Estes fatores contribuem para que o ambiente de igapó seja menos rico quando comparado ao de terra firme, e apresenta maior abertura do dossel, que varia de 30 a 40%, logo terá uma menor biomassa, conseqüentemente uma menor espessura da liteira e uma rápida decomposição desses materiais. A arquitetura florestal é mais simples, constituída de dossel (20 a 25 m), sub-dossel (10 a 15 m) e piso (5 m) (Almeida *et al.* 1993; Lisboa *et al.* 1997).

5.1.3. Terra Preta de Índio ou Terra Preta Antropogênica (TPA)

As áreas do experimento está inserida em terra-firme, sendo uma parcela de 1 ha em latossolo amarelo (LA) e outra, do mesmo tamanho, em área onde a muitas décadas atrás houve ocupação humana pré-histórica. Essa área apresenta horizonte antropogênico onde

foram incorporados ao solo todo o tipo de material orgânico consumido e liberado pelo homem, conhecidas como Terra Preta Antropogênica (TPA). Em Caxiuanã, os sítios arqueológicos são do tipo habitação, cim exceção do sítio "Ilha de Terra" que é do tipo cemitério/habitação. Essas áreas de solos altamente férteis, parecem não exaurir seu conteúdo químico mesmo em condições de floresta tropical, o que contrasta com a maioria dos solos encontrados nesta região, que são pobres e facilmente degradáveis (Kern, 1996).

As TPA's, localizadas geralmente em terra firme, são solos bem drenados, próximos à rede de drenagem. Com posição topográfica privilegiada para observação do entorno, fator importante para a estratégia de sobrevivência do homem pré-histórico (Kern *et al*, 2003a)

Em Caxiuanã foram catalogados mais de 27 sítios de Terra Preta Antropogênica (TPA) atestando a ocupação humana da região por povos pré-colombianos. O contato com os Latossolos Amarelos é gradual, mas irregular. Os solos tipo TPA contém muita matéria orgânica, quartzo, caulinita e oxi-hidróxidos de Fe. São ricos em SiO₂ e Al₂O₃, e contém ainda Fe₂O₃ e TiO₂. Em termos de Ca, Mg, K, e P, e dos elementos traços Cu, Mn, Zn, estes estão mais concentrados nas TPA's do que nos horizontes A dos Latossolos Amarelos adjacentes (Kern e Costa 1997), como mostra a Tabela 2 (Costa *et al.*, 2002).

Tabela 2 – Composição química média de solos tipos TPA e Latossolo Amarelo (LA) em Caxiuanã, PA.

Elementos	TPA (g	g.Kg ⁻¹)	LA (g.Kg ⁻¹)				
	Horizontes						
	A_1	В	$\mathbf{A_1}$	В			
P ₂ O _{5 (Fósforo penta-oxidado)}	8,77	5,09	5,95	4,81			
MgO (Óxido de magnésio)	0,15	0,12	0,11	0,13			
CaO (Óxido de Cálcio)	0,41	0,1	0,23	0,06			
K ₂ O (Óxido de potássio)	0,13	0,16	0,1	0,19			
C (Carbono)	3,04	0,53	2,61	0,53			

O horizonte **A** antrópico, que equivale à camada de TPA, apresenta uma faixa média de 40 a 60cm, entretanto, em determinados casos, pode chegar até 2m de profundidade com evidências de ocupação humana (fragmentos de cerâmica, artefatos líticos e carvão) em toda a sua espessura (Kern, 1996).

5.1.4. Clima

O clima da região é do tipo tropical quente e úmido, classificado segundo Köppen como **Am**, com temperaturas médias anuais de 26 °C e médias extremas (mínimos e máximos) de 22 °C e 32 °C, respectivamente. A região possui período mais chuvoso, entre os meses de dezembro a junho, apresentado aproximadamente 1.700 mm de chuva e período menos chuvoso entre os meses de julho a novembro, ficando em torno de 270 mm de chuva. A umidade relativa média anual situa-se em torno de 80% (Moraes *et al.*, 1997).

5.1.5. Coleta de dados

De acordo com o protocolo estabelecido pelo Projeto Para o Avanço da Rede de Pesquisa Científica na Amazônia (PAN-AMAZONIA) (Phillips e Baker, 2002), foram mensurados todos os indivíduos com diâmetro a partir de 10cm ($\emptyset \ge 10\text{cm}$) dentro de 1ha, tanto na terra preta quanto no latossolo amarelo. As parcelas de 1 ha cada, estão subdivididas em quadrantes de 20x20m, totalizando 25 sub-parcelas, separadas pos fitas amarradas em piquetes de cano de PVC a uma altura visível.

Quanto ao diâmetro, o protocolo enfatiza que a leitura realizada tem uma distinção básica com relação à altura, pois existem situações em que se mensura o diâmetro à altura do peito (DAP), convencionalmente a 1,3 m do solo e situações em que o diâmetro ficará acima do DAP, a fim de evitar deformações e raízes tabulares (sapopemas) para não superestimar a variável de interesse. Esta medida foi chamada de **p**oint **of m**ensuration (POM), situando-se 50 cm acima das características já descritas. No momento da leitura do diâmetro no campo, foi marcado, com tinta apropriada à atividade florestal, o local de leitura original, a fim de referenciá-lo e manter o controle das medições, caso alguma banda tivesse sua mola deflagrada ou a fita tenha sido cortada por insetos ou outros animais.

As bandas dendrométricas foram instaladas em 576 árvores na área de terra preta antropogênica(TPA) e 491 árvores na área de latossolo amarelo (Torre meteorológica), localizada 10 cm acima ou abaixo da marcação do POM, dependendo da situação em que se encontrava. Ela é constituída por uma fita de poliéster, tendo dois pontos fixados por selos galvanizados, onde foram atrelados a uma mola de ferro galvanizado, conforme Figura 5. Sua graduação foi realizada no momento da instalação com um corte sutil no ponto inicial de leitura do incremento mensal (IM) após o ajuste manual, a fim de manter uma referência para leituras posteriores. A outra extremidade é complementar à leitura do diâmetro, indicando o

incremento por meio da expansão ou contração da mola, fruto de variações decorrentes do crescimento ou da umidade excessiva da casca e lenho.

Este material foi empregado pelo protocolo do projeto PAN-AMAZONIA, por apresentar características que não iriam influenciar na coleta dos dados ocasionando erros não-amostrais, estas fitas possuem alta resistência de tração e temperatura, elas possuem estabilidade térmica e podem ser aplicados em materiais quentes com temperaturas inferiores a 130°C.

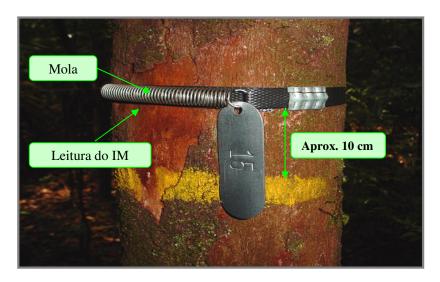


Figura 5 - Banda dendrométrica segundo o protocolo do projeto PAN-AMAZONIA.

Em termos de praticidade e economia, estas bandas dendrométricas são sem dúvida uma boa alternativa para quem deseja monitorar grandes áreas, haja vista que elas são confeccionadas e instaladas na hora do inventário, sem precisar fazer duas viagens a campo, uma para medir os diâmetros, confeccioná-las e depois voltar para instalar em uma próxima vez, seu rendimento é de 0,5 ha/dia com um operador e um anotador.

A leitura dos incrementos foi efetuada mensalmente com o auxílio de um paquímetro analógico e depois convertida para diâmetro pela divisão da secção de circunferência obtida, por π .

A densidade básica da madeira foi adquirida do trabalho de (Chave *et al.*, 2006), onde ele fornece a gravidade específica da madeira (WGS) por meio dos dados de massa específica aparente a 12% e a 15% de umidade, convertendo por meio da equação de Sallenave's (1971),

onde o autor relacionou a densidade relativa D_M de 1.893 espécies de diversas florestas tropicais com os dados de umidade resultando em (n=1.893; r^2 =0.983).

$$WSG = \frac{D_M - Md}{1 + v(S - M)}$$
 (E3)

Onde:

WSG: Wood specific gravity (Gravidade específica da madeira)

 $\mathbf{D}_{\mathbf{M}}$: Densidade da madeira a 10, 12 ou 15% de umidade

M: Teor de umidade a 1%

d: fator de correção de massa por 1% da umidade contida

v: variação no volume por 1% da umidade contida

S: Ponto de saturação das fibras (P.S.F), que varia de espécie para espécie, mas o valor utilizado como média, é de 30% de teor de umidade (t.u.).

Para que os dados atendessem à análise estatística proposta, eles foram separados em classes de densidade segundo as normas da ABNT, citadas por (Melo *et al.*, 1990), conforme a Tabela 3.

Tabela 3 - Intervalos de classe da densidade da madeira.

Densidade em (g . cm ⁻³)					
Leve	Média	Pesada			
D ≤ 0,5	0.5 < D < 0.72	$D \ge 0.72$			

Esta classificação é necessária, pois cada indivíduo pode apresentar uma densidade diferente, onde os fatores genotípicos e fenotípicos irão influenciar nesta variável, e como estamos trabalhando com grupos de indivíduos, esta separação torna a análise mais prática.

5.2. Base de dados

Os dados analisados neste estudo são provenientes de medições mensais das bandas dendrométricas, durante o período de set/2004 a Ago/2006, sempre entre os dias 10 e 15 de cada mês pela equipe do projeto PAN-AMAZONIA.

A variável ambiental precipitação, necessária para verificar a sazonalidade e a correlação com o incremento médio mensal, foi fornecida pelo Departamento de Meteorologia da Universidade Federal do Pará em parceria com Museu Paraense Emílio Goeldi (MPEG) e Estação Científica Ferreira Penna (ECFP), de sua estação meteorológica montada na base de pesquisas em Caxiuanã.

5.3. Análise estatística dos dados

5.3.1. Análise do padrão de crescimento

Para atender os objetivos específicos propostos no presente trabalho, a análise foi conduzida segundo metodologia utilizada por Silva *et al.* (2003), onde foram realizados testes de comparação de médias por meio da análise de variância para medidas repetidas (ANOVAMR), que será utilizada para verificar se o crescimento em diâmetro, onde no presente trabalho chamaremos de incremento médio mensal (IMM), é influenciado pelas diferentes classes diamétricas (CD) e pelas classes da variável densidade básica da madeira (CDe) estabelecida segundo a Associação Brasileira de Normas Técnicas (ABNT), e pelo tempo de medição que no experimento foram os meses (T).

O teste estatístico será corrigido com os fatores **G-G** e **H-F**, que são probabilidades desenvolvidas por Greenhouse-Geisser e Huynh-Feldt, respectivamente, com a finalidade de corrigir os graus de liberdade na obtenção do teste **F**, fornecendo um controle adicional do erro tipo **I**, isto é, uma falsa rejeição da hipótese nula.

Os ajustes para os graus de liberdade, epsilon (ϵ) de Greenhouse-Geisser e Huynh-Feldt, são apresentados a seguir:

$$\hat{\varepsilon} = \frac{\left(\sum_{i=1}^{q} a_{ii}\right)^{2}}{(t-1)\sum_{i=1}^{q} \sum_{i=1}^{q} a_{ij}^{2}}$$

$$\widetilde{\varepsilon} = \frac{(N(t-1)\hat{\varepsilon}-2)}{(t-1)[(t-1)(b-1)-(t-1)\hat{\varepsilon}]}$$
(E4)

O modelo linear univariado proposto para o teste de comparação de médias combinadas é considerado restritivo, pois especificamente já assume que a variância da diferença entre todos os pares de níveis do fator intra-indivíduos iguala a uma mesma constante, o que é chamado de circularidade ou esfericidade da matriz de variância-covariância.

$$Y_{ijk} = \mu + v_i + \psi_j + \tau_k + (v\tau)_{ik} + (\tau\psi)_{jk} + \varepsilon_{m(ijk)}$$
(E5)

Em que:

 μ = média geral

 v_i = efeito das classes de diâmetro (CD) no incremento

 ψ_i = efeito das Classes de densidade (CDe) no incremento

 τ_k = efeito do tempo (T)

 $v\tau_{ik}$ = efeito da interação CD x T

 $\tau \psi_{ik}$ = efeito da interação CDe x T

 $v\psi\tau_{ijk}$ = efeito da interação CD x CDe x T

 $\varepsilon_{m(ijk)}$ = erro associado à observação Y_{ijk}

O teste de correlação foi aplicado para as taxas de incremento nas duas áreas em relação a variável ambiental precipitação e entre os seus incrementos médios mensais (IMM), onde o coeficiente de correlação utilizado foi o de Pearson, por meio da seguinte fórmula:

$$r = \frac{SPC_{xy}}{\sqrt{(SQC_x)(SQCy)}}$$
 (E6)

Para o teste de hipóteses com $n \geq 30$ da comparação de médias entre as duas áreas estudadas foi utilizada a fórmula de z, e para testes com n < 30 foi utilizado o teste t de **student**, conforme as equações a seguir:

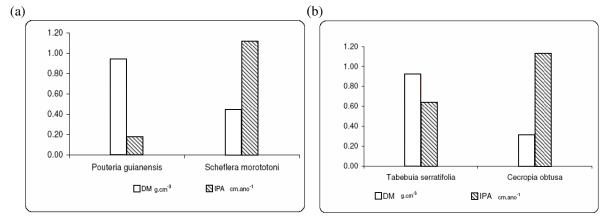
$$z = \frac{x_{1-}x_{2}}{\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}}$$
 (E7)

5.3.2. Análise da Predição por meio da Matriz de Transição probabilística de Markov

A partir dos dados coletados mensalmente no período que corresponde a setembro de 2004 a agosto de 2006, foi realizada, por meio de Matriz de transição, a prognose da estrutura diamétrica das duas áreas estudadas para o ano de 2008. Como teste de hipótese, no intuito de

verificar o ajuste dos dados ao modelo da Cadeia de Markov, foi aplicado o teste Quiquadrado (χ^2) a 1 e a 5% de probabilidade.

$$\chi_{\text{cal}}^{2} = \sum_{i=1}^{k} \frac{(F_{o} - F_{e})^{2}}{F_{e}}$$
(E8)


6. RESULTADOS E DISCUSSÃO

6.1 Incremento médio anual em diâmetro (IMM)

O incremento médio para o grupo de árvores estudadas (n=400) na área do latossolo amarelo, monitorado durante 24 meses foi de 1,108 mm ± 0,08 (IC 95%), ficou abaixo dos incrementos apresentados no área do projeto BIONTE, Amazônia Central (Higuchi *et al.*, 1997) ,na Flona Tapajós (Silva *et al.*, 1997) e na área da ZF-2 (Silva, 2001)Nessas áreas o IMM ficou entre 1,5 a 2 mm.ano⁻¹. Porém na área de terra preta antropogênica (TPA), com o mesmo número de árvores mnonitoradas (n=400), houve um incremento muito acima do esperado e totalmente fora dos padrões de florestas tropicais 6,82mm ± 0,042 (IC 95%).

A taxa de incremento das espécies pode ser influenciada por diversos fatores, os principais são água, luz e solo com todo seu componente mineral trocável (Azevedo, 2006). O elevado valor para o incremento da área de terra preta antropogênica (TPA) não estaria superestimado, pois esta área é muito fértil apresentando um conteúdo mineral do solo com os principais macro e micronutrientes em abundância e disponíveis para as plantassendo solos bem drenados o que pode facilitar a absorção de nutrientes.

Outro fator importante é a densidade da madeira, pois incremento rápido indica que a espécie investe menos na construção dos tecidos condutivos e mais em estratégias de sobrevivência pela parte reprodutiva (Chave *et al.*, 2006), o que lhe confere uma baixa densidade da madeira. Esta relação inversa, entre incremento e a densidade da madeira, pode ser observada na Figura 6a e 6b, de espécies presentes nas áreas em questão.

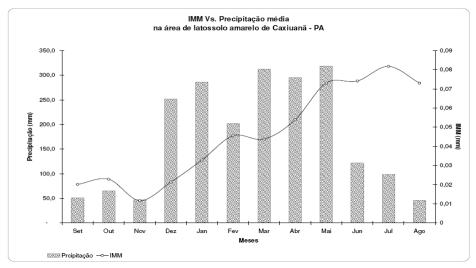
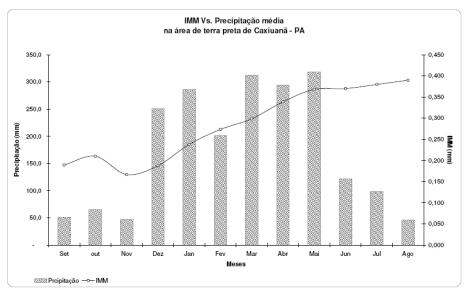


Figura 6- Comparação entre espécies com estratégias de crescimento diferentes, quanto à densidade da madeira (DM) e o incremento periódico anual (IPA) do LA_(a) e da TPA_(b).

No presente trabalho foram identificadas exatamente estas características na área de (TPA), em que há a presença de espécies com densidade classificada como leve $(D < 0.5 \text{ g.cm}^{-3})$.


6.1.1 Padrão de incremento arbóreo

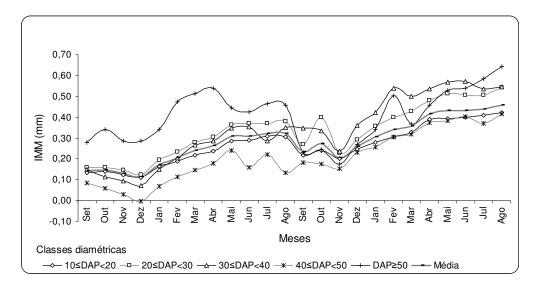
O padrão de incremento do grupo de indivíduos das áreas de latossolo amarelo (LA) e da terra preta (TPA), ambos monitorados com as bandas dendrométricas, são apresentados nas Figuras 7 e 8.

Figura 7 - Padrão de incremento médio mensal em diâmetro dos indivíduos do (LA) em relação a precipitação pluviométrica no período do experimento.

Durante os 24 meses monitorados com as bandas dendrométricas, observa-se a variação do incremento acompanhando a sazonalidade das chuvas, porém no primeiro ano há uma discreta ascensão no incremento, talvez pelo fato de ajuste das cintas dendrométricas e pela irregularidade das chuvas deste período. No ano seguinte as chuvas mantiveram-se mais regulares, causando uma variação mais abrupta nos incrementos, conferindo-lhe uma relação positiva, mas levando em consideração todo o período de observação, a correlação entre a precipitação pluviomérica e o incremento médio foi baixa, mas significativa (r = 0,1; p < 0,001).

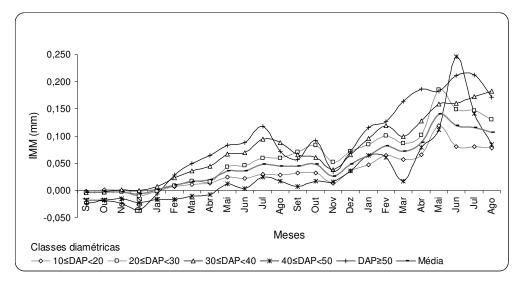
Figura 8 - Padrão de incremento médio mensal em diâmetro dos indivíduos da (TPA) em relação a precipitação pluviométrica coletada no período do experimento.

Para o grupo de indivíduos mensurados no mesmo período na área de terra preta (TPA), o padrão de crescimento apresentou-se mais influenciado pela sazonalidade das chuvas, onde os dois picos de incremento ocorreram justamente nas épocas mais chuvosas nos meses de dezembro a maio. No entanto, a correlação entre o incremento e a precipitação pluviométrica para os 24 meses também foi baixa, mas significante (r = 0.2; p < 0.001).


O crescimento que é registrado nessa época do ano, onde a precipitação pluviométrica é mais intensa, deve-se em grande parte à interferência da água, isto é, uma brusca entrada de água na planta, que em alguns casos como em árvores com baixa densidade (maior porosidade dos traqueídeos), acarreta em uma superestimação da variável volume. No entanto, isto é pouco perceptível em espécies com densidade da madeira elevada.

O cálculo realizado para obtenção do incremento médio, também acaba filtrando essas variações causadas pela densidade, quantidade de água nos elementos dos vasos e entre as épocas mais e menos chuvosas do período de mensuração.

O IMM por classe diamétrica, das duas áreas estudadas, em relação à media são apresentados nas Figuras 9 e 10. Na TPA o IMM da maior classe (DAP ≥ 50 cm), ficou acima da média praticamente em todo o período de mensuração, exceto nos meses de pouca chuva ocorrido no início do ano seguinte, entre 09 à 11/2006, onde a precipitação pluviométrica manteve-se em torno de ±50mm. A classe de DAP entre 20 e 30 cm também se comportou acima da média durante todo o período, mas a classe de DAP entre 40 e 50 cm, apesar de serem árvores que possivelmente estão mais expostas a luz, pelo fato de estarem compondo o dossel, mantiveram-se abaixo da média durante o período mensurado.


O fato de a última classe diamétrica obter valores que a mantiveram acima da média durante o período de observação, pode ser conseqüência das poucas espécies emergentes que estão incluídas nesta classe (sumaúma, *Ceiba pentandra*; andiroba, *Carapa guianenssis*; taperebá, *Spondias mombim* dentre outras), que são aquelas sem competição direta por luz com outras, por estarem com suas copas acima do dossel, apresentando altas taxas fotossintéticas. Em contraste, a penultima classe que agrega espcompetem entre si no *continuum* florestal com suas copas sobrepostas e entrelaçadas.

A estrutura florestal da área de TPA, apesar de ter sido manipulada diversas vezes por povos pré-colombianos, é composta por diversas espécies de grande porte e apresenta um dossel descontínuo com vários estratos, onde o sub-bosque apresenta uma estrutura mais densa e de difícil acesso, esta descontinuidade no dossel pode estar favorecendo os estratos inferiores com uma incidência luminosa maior.

Figura 9 - Padrão de incremento médio mensal em diâmetro dos indivíduos da (TPA) por classes diamétricas em relação a média.

No LA houve um comportamento próximo ao que ocorreu na TPA, onde os indivíduos da maior classe (DAP \geq 50 cm) mantiveram-se acima da média quase todo o período, porém a classe (40 \leq DAP < 50 cm) apresentou uma variação nos últimos meses de mensuração ficando acima da média, mas esteve abaixo durante a maior parte do período. Em relação as classes menores, pelo fato do dossel ser fechado, mantém um padrão de crescimento mais discreto comparado com as menores classes da TPA.

Figura 10 - Padrão de incremento médio mensal em diâmetro dos indivíduos do (LA) por classes diamétricas em relação a média.

O comportamento do IMM em relação as classes diamétricas apresentou resultados bastante expressivos quando se trata da questão da exploração dos recursos naturais por meio do manejo florestal, pois para as classes que representam o estoque de madeira comercial, fica evidente o quanto a competição por recursos pode interferir na produtividade de um indivíduo para formação do tecido lenhoso.

Para tentar identificar as diferenças entre as médias do IMM nas classes diamétricas, além da análise gráfica, como foi apresentado anteriormente, foram aplicados testes como análise de variância (ANOVA) e a posteriori um teste de comparação de médias como a diferença mínima significativa de Fischer (DMS).

Levando em consideração as cinco classes diamétricas, o resultado da ANOVA (Tabela 4) para a área de LA mostrou que há diferença significativa entre a média do incremento em cada classe (p < 0,001), confirmado com o teste de contraste de médias (DMS), onde as classes 1, 3 e 5 diferem entre si, porém as classes 1, 2 e 4 são estatisticamente iguais assim como as classes 2, 3 e 5, que não apresentaram diferença significativa entre seus pares de médias, como mostra a Tabela 5.

Tabela 4: Análise de variância (ANOVA) para as classes diamétricas no LA.

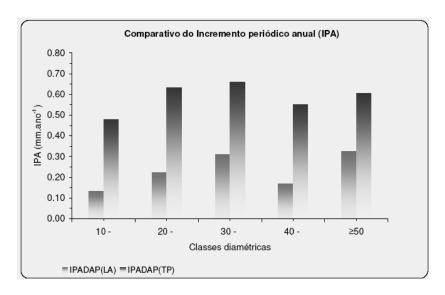
Fonte de variação	Gl	SQ	MQ	F	P
Classes diamétricas	4	0,058	0,014	4,862	0,001
Erro	115	0,341	0,003		

Tabela 5: Matriz de probabilidades do teste da diferença mínima significativa (DMS) de Fischer para o IMM entre as classes diamétricas no LA.

CD (cm)	1	2	3	4	5
$1 10 \le DAP < 20$	1				
$2 20 \le DAP < 30$	0,105	1			
$3 30 \le DAP < 40$	0,012	0,357	1		
$4 40 \le DAP < 50$	0,735	0,051	0,004	1	
5 DAP \geq 50	0,002	0,114	0,507	0,001	1

Executando a mesma análise para as cinco classes diamétricas, o resultado da ANOVA para a área de TPA (Tabela 6), mostrou que há diferença significativa entre a média do incremento em cada classe (p < 0,001), confirmado com o teste DMS, onde as classes 1, 3 e 5 diferem entre si, porém as classes 1 e 2 são estatisticamente iguais assim como as classes

2, 3 e 5, que não apresentaram diferença significativa entre seus pares de médias, como mostra a Tabela 7. Vale ressaltar que em duas áreas com estrutura florística, fitofisionômica e edáfica distintas, os resultados da ANOVA e do teste DMS foram muito próximos. Este resultado mostra que os estratos das duas áreas respondem de forma semelhante em relação as variáveis ambientais, porém com ritmos e estratégias de crescimentos diferentes.


Tabela 6 - Análise de variância (ANOVA) entre as classes diamétricas na TPA.

Fonte de variação	Gl	SQ	MQ	F	P
Classes diamétricas	4	0,553	0,138	8,445	0,001
Erro	115	1,882	0,016		

Tabela 7 - Matriz de probabilidades do teste da diferença mínima significativa (DMS) de Fischer para o IMM entre as classes diamétricas na TPA.

	CD (cm)	1	2	3	4	5
1	$10 \le DAP < 20$	1				
2	$20 \le DAP < 30$	0,061	1			
3	$30 \le DAP < 40$	0,041	0,858	1		
4	$40 \le DAP < 50$	0,135	0,001	0,001	1	
5	$DAP \ge 50$	0,001	0,055	0,082	0,001	1

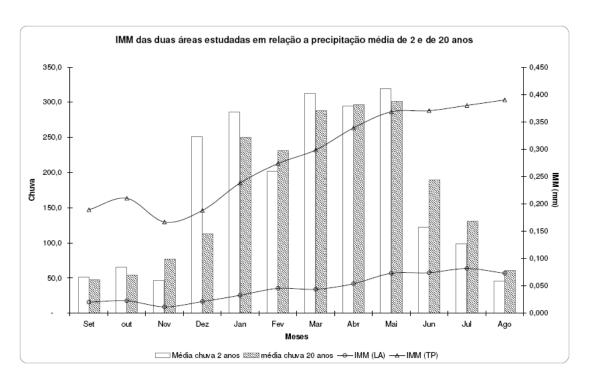
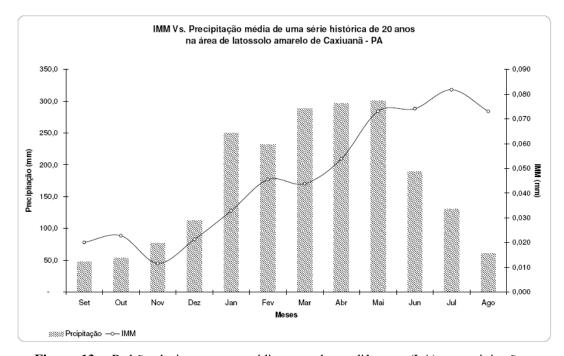

O incremento periódico anual (IPA) da terra preta foi em média 83% superior ao IPA do latossolo amarelo, isso se torna mais nítido com o comparativo do incremento periódico anual, conforme a Figura 11. Porém o padrão nas duas áreas é semelhante (r = 0,82; p < 0,001), mostrando que apesar de serem áreas totalmente diferentes, há uma constante ecológica que mantém padrão de crescimento pareado nos diferentes estratos da floresta, onde existem espécies de menor porte sem luz direta conferindo-lhe um menor incremento e árvores que estão compondo o dossel, apresentando maior incremento devido à alta disponibilidade de luz.

Figura 11 - Incremento periódico anual (IPA) por classe diamétrica da área de LA e de TPA, para efeito de comparação do incremento.

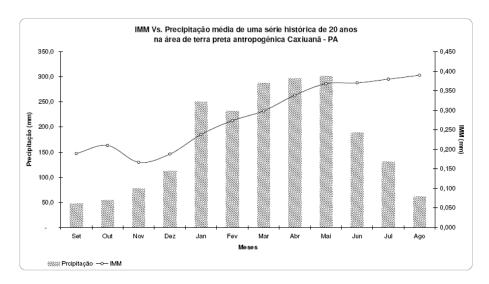
6.1.2 Padrão de incremento arbóreo comparado com série histórica (1980 – 2000) IBAMA/FLONA Caxiuanã – PA.

Em uma breve análise dos dados de precipitação pluviométrica da série histórica (IBAMA), observou-se que o intervalo de confiança foi $2.008,46 \pm 15,12$ mm ($\alpha = 0,05$), porém no período estudado, os dados caíram fora do intervalo de confiança da série histórica, indicando que apesar do crescimento está correlacionado com a sazonalidade das chuvas, é importante observar esta variável principalmente em anos atípicos com longa estiagem, podendo incorrer em erros na hipótese de extrapolação. Estas variações bruscas de precipitação pluviométrica são filtradas com a análise da série histórica, como mostra a Figura 12, da relação entre o IMM das duas áreas e a precipitação pluviométrica média de 20 anos e de 2 anos.

Figura 12 - Padrão de incremento médio mensal em diâmetro e precipitação média de uma série histórica de 20 anos de coleta na FLONA Caxiuanã/PA.


Tabela 8 - Dados de precipitação pluviométrica mensal (mm) da série histórica 1980-2000, coletados na FLONA Caxiuanã, para efeito de comparação com os dados coletados no período de 2004 - 2006.

Meses	Prec. Média 1980-2000 (mm)	Prec. Média 2004-2006 (mm)
Set	47,4	50,90
Out	53,8	65,50
Nov	77,2	46,60
Dez	112,8	251,20
Jan	250,5	286,40
Fev	231,6	201,60
Mar	288,0	312,55
Abr	296,4	294,80
Mai	301,1	318,90
Jun	189,4	122,10
Jul	130,6	98,80
Ago	61,2	45,50
Prec. Anual	2.040,0	2.094,85


No trabalho realizado por (Silva, 2001), estudando o padrão de crescimento de espécies em diferentes classes topográficas na área da ZF-2, obteve uma precipitação anual de

2.610 mm, com um intervalo de confiança de (± 124 mm; α=0,05). No entanto, o resultado da análise de precipitação para o ano do experimento, também apresentou um valor fora do intervalo de confiança da série histórica (3.491 mm)

Nas Figuras 13 e 14, são apresentados os padrões de crescimento tanto do (LA) como da (TPA) respectivamente, porém ambos comparados com uma série histórica (Tabela 8) cedida pelo Departamento de Meteorologia da Universidade Federal do Pará (UFPA), são dados provenientes de uma estação meteorológica situada na base de operações do Instituto brasileiro do meio ambiente e dos recursos naturais renováveis (IBAMA), que está localizada na Floresta Nacional de Caxiuanã/PA.

Figura 13 - Padrão de incremento médio mensal em diâmetro (LA) e precipitação média de uma série histórica de 20 anos de coleta na FLONA Caxiuanã/PA.

Figura 14 - Padrão de incremento médio mensal em diâmetro (TPA) e precipitação média de uma série histórica de 20 anos de coleta na FLONA Caxiuanã/PA.

O IMM quando correlacionado com a série histórica de 20 anos, apresentou um coeficiente de correlação positivo e altamente significante, tanto para a área de LA (r = 0,76; p < 0,001) como para a área de TPA (r = 0,80; p < 0,001). Conforme mencionado anteriormente a média da série histórica filtra essas variações bruscas da coleta de 2 anos de precipitação, conferindo-lhe um alto coeficiente de correlação, associando diretamente os maiores e os menores valores de precipitação e IMM.

6.1.3 Incremento médio mensal (IMM) em função das classes de diâmetro (CD) e classe de densidade (CDM), com o passar do tempo.

Os resultados da análise de variância para medições repetidas (ANOVA-MR), afim de verificar se as variações do incremento são influenciadas pelos intervalos de classe diamétricas e de densidade da madeira com o passar do tempo, tanto no latossolo amarelo como na terra preta antropogênica, são apresentados nas Tabelas 9 e 10.

Conforme os autores (Azevedo, 2006 e Silva *et al.*, 2003) seguindo as orientações de (von Ende, 2001), é preciso observar as probabilidades geradas na ANOVA-MR, pois caso haja violação dos preceitos de circularidade da matriz de variância-covariância (Σ) se faz necessário realizar os ajustes dos graus de liberdade da estatística **F** realizadas pelos (ε) de Greenhouse-Geisser (G-G) (1958) e Huynh-Feldt (H-F) (1976), sendo que o mais conservador é aquele que apresenta menor valor da probabilidade de ajuste (ε).

No LA a variação do IMM em função do mês foi altamente significante (G-G < 0,001), isto é, o IMM variou durante o período de observação. A interação entre as classes de diâmetro e o mês foi significativa (G-G < 0,001), a interação entre as três variáveis mês, classe de diâmetro (CD) e classe de densidade (CDM) foi significativa a (α =5%), porém a interação entre o mês e as classes de densidade não foi significativa a (α =5%) (G-G = 0,095), indicando que a densidade da madeira não interferiu no IMM com o passar do tempo.

Tabela 9 – Análise de Variância para medições repetidas dentro das classes de diâmetro, densidade da madeira e suas interações, na área de LA.

Fonte de variação	GL	SQ	MQ	F	р	G-G	H-F
Mês	23	7,544	0,328	19,604	0,001	0,001	0,001
Mês*CD	92	3,953	0,043	2,568	0,001	0,001	0,001
Mês* CDM	46	1,342	0,029	1,744	0,001	0,095	0,089
Mês*CD* CDM	184	4,963	0,027	1,612	0,001	0,023	0,020
Erro	6.072	101,593	0,017				

Greenhouse-Geisser (ϵ): 0,1530 Huynh-Feldt (ϵ): 0,1636

A análise de variância para a área de TPA, também mostrou que o IMM é influenciado diretamente pela variável mês, obtendo evidências significativas (G-G < 0,001). As interações (mês*CD), (mês*CDM) e (mês*CD*CDM), apresentaram fracas evidências de significância (G-G = 0,898; 0,653 e 0,778) respectivamente, ou seja, neste sítio o IMM não é influenciado pela interação dessas variáveis com o passar do tempo.

Tabela 10 – Análise de Variância para medições repetidas dentro das classes de diâmetro, densidade da madeira e suas interações, na área de TPA.

Fonte de variação	GL	SQ	MQ	F	P	G-G	H-F
Mês	23	14,647	0,637	11,944	0,000	0,000	0,000
Mês*CD	92	2,998	0,033	0,611	0,999	0,898	0,905
Mês*CDM	46	1,877	0,041	0,765	0,876	0,653	0,660
Mês*CD*CDM	184	8,001	0,043	0,816	0,967	0,778	0,785
Erro	8.441	450,03	0,053				

Greenhouse-Geisser (ϵ): 0,2021 Huynh-Feldt (ϵ): 0,2128

Para verificar separadamente se há influência das classes de densidade da madeira (CDM), no incremento médio, foi observado se havia diferença entre os pares de médias do IMM destas classes, utilizando-se a ANOVA e o teste de diferença mínima significativa (DMS), conforme as Tabelas 11, 12, 13 e 14.

Tabela 11 - Análise de variância (ANOVA) entre as classes de densidade da madeira na TPA.

Fonte de variação	Gl	SQ	MQ	F	P
Classes de densidade	2	0,232	0,116	10,225	0,001
Erro	69	0,784	0,011		

Tabela 12 - Teste da diferença mínima significativa (DMS) do IMM entre as classes de densidade da madeira na TPA.

Classes de densidade (g.cm ⁻³)	N	IMM Min. (mm)	IMM Max. (mm)	Variância	Média
DM < 0.50	24	0,071	0,434	0,011	0,256 a
$0.50 < DM \le 0.72$	24	0,186	0,585	0,014	0,367 b
DM > 0.72	24	0,102	0,410	0,008	0,239 a

Tabela 13 - Matriz de probabilidades do teste da diferença mínima significativa (DMS) de Fischer para o IMM entre as classes de densidade da TPA.

CI	OM (g.cm ⁻³)	1	2	3
1	DM < 0.50	1		
2	$0.50 < DM \le 0.72$	0,001	1	
3	DM > 0.72	0,578	0,001	1

A ANOVA gerada para a área de TPA, indicou que havia diferença significativa entre as classes de densidade da madeira (CDM) (P<0,001). Porém o teste DMS informou que pelo menos uma das classes $(0,50 < \mathrm{DM} \le 0,72)$ difere estatisticamente das demais classes apresentadas e as classes (DM < 0,5 e DM > 0,72) não apresentaram diferenças estatisticamente entre seus pares de médias ($\alpha = 0,05$).

Tabela 14 - Análise de variância (ANOVA) entre as classes de densidade da madeira no LA.

Fonte de variação	Gl	SQ	MQ	F	P
Classes de densidade	2	0,001	0,001	0,019	0,981
Erro	69	0,133	0,002		

Tabela 15 - Teste da diferença mínima significativa (DMS) do IMM entre as classes de densidade da madeira no LA.

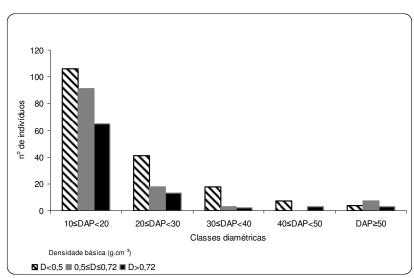
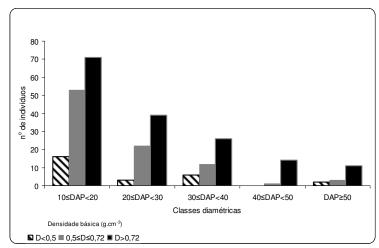

Classes de densidade (g.cm ⁻³)	N	IMM Min. (mm)	IMM Max. (mm)	Variância	Média
DM < 0.50	24	-0,016	0,125	0,002092	0,047 a
$0.50 < DM \le 0.72$	24	-0,009	0,127	0,001916	0,049 a
DM > 0.72	24	-0,006	0,124	0,001783	0,049 a

Tabela 16 - Matriz de probabilidades do teste da diferença mínima significativa (DMS) de Fischer para o IMM entre as classes de densidade do LA.

C	DM (g.cm ⁻³)	1	2	3
1	DM < 0.50	1		
2	$0,50 < DM \le 0,72$	0,867	1	
3	DM > 0.72	0,866	0,999	1


Na área de LA o resultado do teste de comparação de médias não apresentou diferença entre as classes de densidade da madeira (p = 0,981), confirmado com o teste DMS no qual mostrou que as três classes apresentaram médias para o IMM estatisticamente iguais.

O incremento observado para os dois sítios estudados, mostra nitidamente que a TPA cresce muito mais que o LA. Além do fator fertilidade do solo, a densidade da madeira é uma variável que devemos levar em consideração. A relação entre essas duas variáveis vem sendo estudada em uma escala bem mais ampla em termos de Amazônia, trabalhos como de (Nogueira *et al.*, 2007; Malhi *et al.*, 2006 e Baker *et al.*, 2004) tem mostrado que existe uma relação inversa, isto é, em solos mais férteis a densidade da madeira é menor que em solos pobres, como é o caso do latossolo amarelo distrófico. Este resultado também é encontrado no presente estudo quando relacionamos as classes de densidade na distribuição diamétrica das duas áreas estudadas, como mostram as Figuras 15 e 16.

Figura 15 - Distribuição diamétrica em relação às classes de densidade da madeira em (g.cm⁻³), da área de TPA.

Na área de TPA observa-se um maior número de indivíduos de densidade classificada como leve (De < 0,5) em praticamente todas as classes diamétricas, exceto para a classe de indivíduos com DAP \geq 50 cm, onde há um maior número de indivíduos na classe intermediária de densidade (0,5 \leq De \leq 0,72).

Figura 16 - Distribuição diamétrica em relação às classes de densidade da madeira em (g.cm⁻³), da área de LA.

Ocorre o inverso na área de LA, onde há um maior número de indivíduos de densidade classificada como pesada (De > 0,72) em todas as classes diamétricas, este resultado mostra porque o IMM é influenciado de forma discreta ao nível de significância de (α = 0,1), uma vez que a densidade da madeira pode influenciar no transporte de água na planta assim como os fotoassimilados, pois a estrutura dos elementos de vaso de uma árvore que apresenta alta densidade tem uma parede celular mais espessa por apresentar quantidades elevadas de lignina.

Segundo (Meinzer, 2003) o aumento na densidade da madeira aumenta a resistência à cavitação (apresentam menores diâmetros nos vasos), entretanto isso tem como consequência uma redução na condutividade hidráulica que reduz a eficiência de reposição de água nas folhas durante o dia, isso mantém um ritmo mais cadenciado de fluxo de seiva, podendo interferir na formação de tecidos lenhosos.

6.2 Predição da estrutura diamétrica por meio do modelo matricial probabilístico de Markov.

A predição da estrutura diamétrica, com a utilização de modelagem através do método da cadeia de Markov, foi realizada no presente estudo, no intuito de se verificar o comportamento do incremento diamétrico, segundo a sazonalidade dos efeitos climáticos, a formação florestal e à formação edáfica eutrófica e distrófica da microrregião . Este procedimento poderá auxiliar na tomada de decisões importantes no manejo florestal, haja vista que esta ferramenta otimiza a gestão de recursos florestais em curto prazo, dando uma estimativa futura do incremento das espécies potencialmente exploráveis.

Nas Tabelas 17 e 19, encontram-se as matrizes de freqüência para cada ocasião, onde as classes foram agrupadas em intervalos de 5 cm, a menor classe foi de 10≤DAP<15 cm e a maior foi representada por árvores com DAP ≥ 50cm. As matrizes foram estruturadas com base na distribuição diamétrica dos anos de 2004 e 2006, apresentando 12 estados, dos quais o primeiro trata-se do recrutamento (R), do 2° ao 10° correspondem a 09 classes diamétricas, sendo a última uma classe aberta (DAP ≥ 50cm). O 11° estado corresponde à próxima (P), que seria um estado em que as árvores que na segunda ocasião apresentaram valores que estariam incluídas em novas classes, caso elas permanecessem com uma amplitude de 5 cm. Por último, o 12° estado é representado pela mortalidade (M), isto é, árvores que morreram neste intervalo de tempo de 2 anos, pois estavam presentes na primeira medição, porém estavam ausentes na remedição.

O comportamento da distribuição diamétrica projetada para o ano de 2008, apresentou-se pouco discrepante em relação a observada, isso ocorre tanto para a TPA como para o LA, como mostram as Figuras 17 e 18. O comportamento típico de florestas multiespecíficas e multiâneas o J-invertido, que é evidente para as duas áreas assim como nas duas ocasiões.

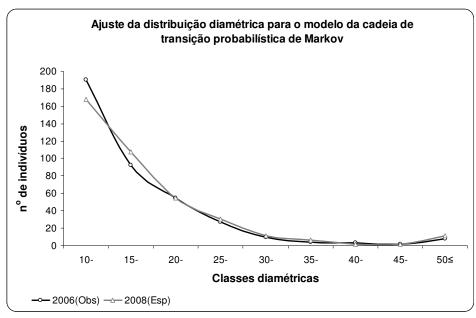


Figura 17 - Distribuição diamétrica observada e esperada para a área de TPA.

Na Tabela 17, podemos observar as transições de estados entre os anos de 2004 à 2006, onde o estado R apresentou um total de 35 árvores, isto é, recrutaram 35 indivíduos que passaram a compor o banco de dados, onde pelo menos 43% ficaram inseridos na classe diamétrica DAP≥10cm. No estado M observa-se 41 indivíduos no total, ou seja, 41 indivíduos saíram do sistema por causas naturais que culminaram em sua senescência ou morte, sendo aproximadamente pelo menos 44% dos indivíduos na menor classe diamétrica.

Segundo (Teixeira *et al.*, 2007), em geral a probabilidade de permanência na mesma classe diamétrica é bem elevada, principalmente para períodos curtos com intervalos de 2 e 4 anos. Isto é confirmado no presente trabalho, pois analisando a primeira classe diamétrica DAP \geq 10cm, a probabilidade de permanência foi de aproximadamente 60% e aproximadamente 7% de probabilidade para o vetor (M) mortalidade para a mesma classe para a área de TPA.

Tabela 17 – Ti	ransição de estado	s por classes	diamétricas (c	em), durante o	o período de 2004 a
2006 na área de TPA.					

				Class	es diar	nétrica	as (CD) para	o ano	de 200	6		
CD para (2004)	R	ı	10<15	15<20	20<25	25<30	30<35	35<40	40<45	45<50	≥50	М	Total geral
R			34	1									35
10<15			160	26	4							18	208
15<20				79	13							4	96
20<25					43	11	1					8	63
25<30						22	5					6	33
30<35							7	3				3	13
35<40								4				2	6
40<45									2	1			3
45<50										1	1		2
≥50											8		8
Р					5	4	1		1		1		12
M													
Total geral			194	106	65	37	14	7	3	2	10	41	479

A diagonal principal indica o número de indivíduos que permaneceram na mesma classe diamétrica a outra diagonal representa o número de indivíduos que passaram para outra classe no período observado. A matriz inicial de probabilidades de transição que se encontra no anexo II, apresenta com mais detalhes as proporções de permanência e de transição de classes, assim como as probabilidades para os vetores mortalidade (M) e recrutamento (R).

A Tabela 18 apresenta os resultados finais da Cadeia de Markov para a TPA, isto é, a projeção da distribuição do número de árvores nos diferentes estados que compõe o modelo, os vetores (R) recrutamento, (M) mortalidade e as respectivas classes diamétricas, para um período seguinte com o mesmo intervalo de tempo (2004-006 para 2008).

Como teste de hipóteses, a fim de avaliar a robustez do modelo de transição probabilística de Markov para projeções da dinâmica da estrutura diametral sob condições de floresta tropical, foi utilizado o teste Qui-quadrado (χ^2) para comparar as freqüências observadas e esperadas ao nível de significância ($\alpha_{0,01}$ e $\alpha_{0,05}$). O resultado obtido mostra que na TPA o qui-quadrado calculado foi menor que o Tabelado, afirmando que não existe diferença significativa entre as freqüências observadas e projetadas na distribuição do número

de árvores em cada classe diamétrica para o ano de 2008 (χ^2_{cal} = 8,2) (Tabela 18). Diante deste resultado a Cadeia de Markov pode ser utilizada como instrumento de prognose da dinâmica de povoamentos de florestas que já sofreram intervenção, como é o caso da TPA que foi originada a partir da intensa atividade de uso da terra por povos pré-colombianos.

Tabela 18 – Freqüência observada (2004 e 2006) e projetada (2008) de árvores vivas
e mortas, por classe diamétrica e valores de Qui-quadrado (χ^2) na TPA.

Classe]	Freqüên	cia	χ ² cal	Morta	Mortalidade		
diamétrica	2004	2006	2008	χ cal	2006	2008		
10 < 15	208	190	168	2,94	18	15		
15 < 20	96	92	108	2,24	4	5		
20 < 25	63	55	55	0,00	8	8		
25 < 30	33	27	31	0,48	6	5		
30 < 35	13	10	12	0,21	3	3		
35 < 40	6	4	7	1,00	2	1		
40 < 45	3	3	2	0,50	0	0		
45 < 50	2	2	2	0,00	0	0		
DAP≥ 50	8	8	11	0,82	0	0		
Total	432	391	394	8,2	0	0		

 $\chi^2_{\text{tab}} (\alpha_{0.05}; 9 \text{ gl}) = 16.9; \chi^2_{\text{tab}} (\alpha_{0.01}; 9 \text{ gl}) = 21.7$

Para a área de LA a curva típica de j-invertido teve uma leve alteração em sua calda, pois houve mais indivíduos com DAP ≥ 55cm que o esperado, porém não interferindo na análise dos resultados, uma vez que as curvas de distribuição diamétrica observada e projetada estão bem ajustadas, como mostra a Figura 18.

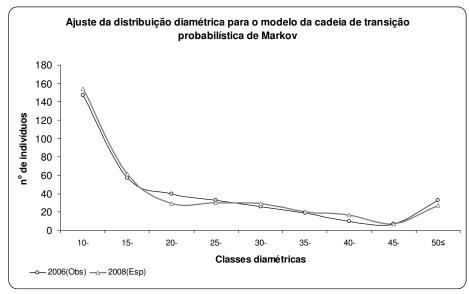


Figura 18 - Distribuição diamétrica observada e esperada para a área de LA.

Na Tabela 17, o vetor (R) recrutamento apresentou um total de 11 árvores, isto é, 11 indivíduos ingressaram em uma das classes diamétricas da matriz, onde o maior número de recrutamentos foi na menor classe de diâmetro com 11 indivíduos. O vetor (M) mortalidade obteve um valor igual a 14, ou seja, 14 indivíduos saíram do sistema por causas naturais que provocaram sua senescência ou morte, no entanto a menor classe foi a que mais apresentou indivíduos nestas condições, segundo as probabilidades geradas pelo modelo.

Tabela 19 – Transição de estados por classes diamétricas (cm), durante o período de 2004 a 2006 na área de LA.

	Classes diamétricas (CD) para o ano de 2006												
CD para (2004)	R	I	10<15	15<20	20<25	25<30	30<35	35<40	40<45	45<50	≥50	М	Total geral
R			11										11
10<15			141	6								5	152
15<20				55	2							2	59
20<25					35	5							40
25<30						28	4	1				1	34
30<35							24	1	1				26
35<40								18	1			1	20
40<45									10			2	12
45<50										7		1	8
≥50											18	2	20
Р			3	1				1	6	2	14		27
М													0
Total geral			155	62	37	33	28	21	18	9	32	14	409

As probabilidades de permanência na mesma classe de diâmetro para a área de LA, também foram altas, por exemplo, para a primeira classe diamétrica foi de aproximadamente 86%, representados pela diagonal principal da matriz de probabilidades (anexo II). Para a mesma classe as chances de um indivíduo senescer e consequentemente morrer, ficou entorno de 3% e para o vetor R entorno de 92%, isto é, há 92% de chances de um indivíduo ser recrutado para a primeira classe de diâmetro, mostrando uma alta freqüência para indivíduos jovens ingressarem no diâmetro de 10 cm..

Tabela 20 – Frequência observada (2004 e 2006) e projetada (2008) de árvores vivas e mortas, por classe diamétrica e valores de Qui-quadrado (χ^2_{cal}) no LA.

Classe]	Freqüên	cia	χ ² cal	Morta	lidade
diamétrica	2004	2006	2008	χ cal	2006	2008
10 < 15	152	147	154	0,36	5	5
15 < 20	59	57	61	0,27	2	2
20 < 25	40	40	30	3,63	0	0
25 < 30	34	33	30	0,31	1	1
30 < 35	26	26	30	0,43	0	0
35 < 40	20	19	20	0,06	1	1
40 < 45	12	10	17	2,82	2	2
45 < 50	8	7	7	0,01	1	1
DAP≥ 50	20	18	27	1,27	2	2
Total	409	395	376	9,2	14	14

 $\chi^2_{\text{tab}} (\alpha_{0,05}; 9 \text{ gl}) = 16,9; \chi^2_{\text{tab}} (\alpha_{0,01}; 9 \text{ gl}) = 21,7$

Os resultados finais para as projeções das classes diamétrica com a utilização do modelo de projeção probabilístico de Markov dos anos observados (2004-2006) para 2008, estão presentes na Tabela 18. O teste Qui-quadrado também foi aplicado para verificar a discrepância entre as freqüências das classes diamétricas observadas e projetadas ao nível de significância ($\alpha_{0,01}$ e $\alpha_{0,05}$).

A resposta do teste qui-quadrado para a área de LA foi ($\chi^2_{calc} = 9.2$), sendo menor que o Tabelado χ^2_{tab} ($\alpha_{0.05}$;9 gl) = 16,9; χ^2_{tab} ($\alpha_{0.01}$;9 gl) = 21,7, o que nos leva a concluir que não houve diferença significativa entre a distribuição diamétrica observada e a projetada com o modelo de matriz de transição, isto é, o modelo é robusto para a prognose da dinâmica de florestas nativas, independente do fatores externos que ocorreram e que são inerentes a dinâmica de florestas tropicais, que é uma característica intrínseca do modelo (propriedade "memory less"). Este estudo trabalhou dados de um período considerado curto, onde foram mensurados indivíduos durante dois anos, mas em caso de prognose para períodos muito longos, devemos tomar cuidado, pois poderemos incorrer em erros de super ou subestimação do comportamento dinâmico florestal, sendo necessária a utilização de refinamentos no modelo, bem como nos dados que foram coletados, tais como a análise exploratória de dados (AED), a utilização de um comparativo como outro modelo de movimentação de diâmetros etre classes, análise da taxa de crescimento por grupos de espécies por meio dos auto-valores da matriz de transição (λ_{1-2}) entre outros que irão melhorar a prognose para longos períodos.

7. CONCLUSÃO

Os resultados gerados a partir dos dados coletados com as bandas dendrométricas foram condizentes com os estudos científicos existentes, indicando que a metodologia proposta ainda é uma alternativa viável e eficiente para o monitoramento de parcelas permanentes em florestas tropicais. No entanto, a confiabilidade e precisão dos dados coletados dependem da atenção para fatores que possam interferir nas medições como insetos, cipós, forma do fuste, tipo de casca e fenologia das espécies. Quanto às bandas dendrométricas, deve-se atentar apenas para o intervalo de estabilização do material nos troncos das árvores, haja vista que o conjunto mola e fita irão se ajustar à forma do tronco atingindo um período ótimo pra começar o monitoramento. No presente trabalho o período de estabilização foi de 3 meses, esse período foi satisfatório para a análise de dados, haja vista que não houve diferença entre períodos de estabilização mais longos.

A precipitação coletada nos anos do experimento (2.096,85 mm) ficou fora do intervalo de confiança da série histórica (2.008,46 mm; \pm 15,12mm) (α = 0,05) coletada na mesma microregião. No entanto, não podemos considerar que o ano do experimento foi um ano atípico por cair fora do intervalo de confiança da região, pois as variações foram mínimas entre a série histórica (1980 - 2000) e os dois anos do experimento, sendo a precipitação anual dos dois anos, apenas 3,6 % superior à da série histórica.

O incremento médio para o grupo de espécies estudado na área do latossolo amarelo (n=400), monitorado durante 24 meses foi de 1,108 mm ± 0,08 (IC 95%), ficou fora do intervalo apresentado pelo BIONTE, FLONA Tapajós e ZF-2 que está entre 1,5 a 2 mm.ano⁻¹. Porém na área de terra preta antropogênica (TPA) (n=400), houve um incremento fora dos padrões de florestas tropicais 6,82mm ± 0,042 (IC 95%). As correlações entre os IMM das duas áreas estudadas e a precipitação coletada no período do experimento foram baixas, porém altamente significantes, onde na TPA obtivemos (r = 0,27; p < 0,001) e no LA (r = 0,25; p < 0,001). Quando os IMM's foram correlacionados com a série histórica (1980 – 2000), os valores ficaram mais ajustados, conferindo-lhe valores satisfatórios e significativos para a TPA (r = 0,80; p < 0,001) e para o LA (r = 0,76; p < 0,001), reflexo da média dos meses da série histórica que filtram as variações mais bruscas, ao contrário do que acontece com a média de dois anos apenas.

Com a análise de variância para medições repetidas (ANOVA-MR), foi possível identificar o quanto as variáveis utilizadas puderam interferir no incremento dos dois grupos

de indivíduos mensurados na TPA e no LA. O mês interferiu de forma significativa no comportamento do padrão de crescimento nas duas áreas TPA (G-G < 0,001) e LA (G-G < 0,001), confirmando com veemência a influência dos fatores climáticos sazonais como precipitação, temperatura e luminosidade nas diferentes estratégias de crescimento.

Das interações geradas pelo modelo da ANOVA-MR, a interação Mês *versus* classe diamétrica foi altamente significativa na área de LA (G-G < 0,001), ou seja, a classe de diâmetro influenciou o IMM com o passar do tempo, porém a TPA o IMM não sofreu interferência por esta interação ao nível de 5% (G-G = 0,999). A interação mês e densidade da madeira (Mês*CDM) não foi significante a 5% na TPA (G-G = 0,653) e no LA (G-G = 0,096), ou seja a densidade da madeira é uma variável que pouco influencia no IMM com o passar do tempo, e na interação entre as três variáveis (Mês*CD*CDM) o resultado foi significativo a 5%, apenas para o LA (G-G = 0,023).

As projeções realizadas para as duas áreas estudadas com a utilização do modelo probabilístico de transição de Markov, mostraram que apesar dos dois anos de medição para uma projeção de mesmo intervalo de tempo (2004-2006 para 2008), não houve discrepância entre os dados observados e projetados no LA (χ^2_{tab} ($\alpha=0.01$; 9 gl) = 21,7; $\chi^2_{\text{calc}}=5.6$) e na TPA (χ^2_{tab} ($\alpha=0.01$; 9 gl) = 21,7; $\chi^2_{\text{calc}}=1.9$). Na TPA recrutaram (R=47) e morreram (M=41) mais indivíduos do que no LA (R=38; M=14), porém a proporção entre R e M no LA é bem mais instável que na TPA.

Esse resultado reflete a eficiência e a robustez do modelo matricial de probabilidade, mesmo sendo aplicado para florestas tropicais, onde a dinâmica tem um ritmo também estocástico, sem levar consideração variáveis complexas como a idade das árvores e índice de sítio. Com isso o modelo é uma útil ferramenta para a prognose em curtos períodos de até dois anos no mínimo, fornecendo uma estimativa confiável de um futuro cenário para a floresta, isso ajuda de forma significante no planejamento de futuras intervenções em empreendimentos do setor florestal, minimizando custos e desperdícios em toda a cadeia produtiva.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- Almeida, S.S., P.L.B. Lisboa, A.S.L. Silva. 1993. Diversidade florística de uma comunidade arbórea na Estação Científica Ferreira Penna, em Caxiuanã (Pará). *Bol. Mus.* Para. Emílio Goeldi, ser. Bot., 9(1): 99-105.
- Arce, J. E.; Pizatto, W.; Sanquetta, C. R.; Wendling, J. L. G.; Maestri, R. 2001. Utilização das matrizes de transição na avaliação e simulação precoces do crescimento de povoamentos de Pinus taeda L. *Revista Floresta*, 27(1/2): 83-98.
- Austregésilo, S. L., Ferreira, R. L. C, Silva, J. A. A., Souza, A. L., Meunier, I. M. J., Santos, E. S. 2004. Comparação de métodos de prognose da estrutura diamétrica de uma floresta estacional semidecidual secundária. *R. Árvore*, (28/2):227-232.
- Azevedo, C. P.; Souza, A. L.; Campos, J. C. C.; Paula Jr., G. G. 1994. Predição da distribuição diamétrica da Floresta Atlântica pelo emprego da matriz de transição. *Revista Árvore*, 18(3):179-193.
- Azevedo, C. P., 2006. Dinâmica de florestas submetidas a manejo na Amazônia oriental: Experimentação e simulação. Doctor thesis, UFPR, 254 p, il,
- Baker, T. R., Affum-Baffoe, K., Buerslem, D. F. R. P., Swaine, M. D. 2002. Phenological differences in water use and the timing of tropical forest inventories: conclusions from patterns of dry season diameter change. *Forest Ecol. Manag.* 171: 261-274.
- Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S. S., Arroyo, L., di Fiore, A., Eerwin, T.,
 Killeen, T. J., Laurence, S. G., Laurence, W. F., Lewis, S. L., Lloyd, J., Monteagudo,
 A., Neill, D. A., Patiño, S., Pitman, N. C. A., Silva, J. N. M., Martínez, F. V., 2004.
 Variation in wood density determines spatial patterns in Amazonian forest biomass,
 Global Change Biology, 10: 545–562.
- Bhraskar, R. e Ackerly, D. D. 2006. Ecological relevance of minimum seasonal water potentials. *Physiologia Plantarum*, 127: 353 359.

- Bruner, H. D.; Moser Jr, J. W. 1973. A Markov chain approach to the prediction of diameter distributions in uneven-aged forest stands. *Canadian Journal of Forest Research*, 4: 409-417.
- Bower, D.R.; Blocker, W.W. 1966. Accuracy of hands and tape for measuring diameter increments. *Journal of Forestry*. 21-22.
- Botosso, P.C.; Tomazello Filho, M. 2001. Aplicação de bandas dendrométricas da dendrocronologia: avaliação da taxa e do ritmo de crescimento do tronco de árvores tropicais e subtropicais. *In*: Maia, N. B., Martos, H. L., Barrella, W. 2001. *Indicadores Ambientais: Conceitos e Aplicações*. EDUC/COMPED/INEP. São Paulo. p. 145-171.
- Botosso, P. C., Vetter, R. E., Tomazello Filho, M. 2000. Periodicidade e taxa de crescimento de árvores de cedro (*Cedrela odorata* L., Meliaceae), jacareúba (*Calophyllum angulare* A. C. Smith, Clusiaceae) e muirapiranga (*Eperua bijuga* Mart. Ex Benth, Leg. Caesalpinioideae) de floresta de terra-firme em Manaus, Amazonas. In: ROIG, F. A. *Dendrocronología en América Latina*. Mendoza, Ediunc.
- Burkhart, H. E. 1990. Status and future of growth and yield models. In: *Prdc. a Symp. on State-of the Art Methodology of Forest Inventory*. USDA For. Serv., Gen. Tech. Rep. PNW GTR-263, 409-414.
- Bucci, S. J.; Scholz, F. G.; Goldstein, G.; Meinzer, F. C.; Hinojosa, J. A.; Hoffmann, W. A. e Franco, A. C. 2004. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. *Tree Physiology*, 24: 1119 1127.
- Buongiorno, J.; Michie, B. R. 1980. A matrix model for uneven-aged forest management. *Forest Science*, 26(4): 609-625.
- Camargo, P.B., Salomão, R.P.; Trumbore, S.; Matinelli, A. 1994. How old are large brazil-nut trees (*Bertholletia excelsa*) in the amazon. *Sci. Agric*, 51(2): 389-391.
- Chave, J.; Muller-Landau H. C.; Baker, T.; Easdle, T. A.; Steege, H. T; Webb, C., 2006. Regional and phylogenetic variation of wood density acrosc 2.456 neotropical tree species. *Ecological Society of América*, 16(6): 2356–2367.

- Chave, Jérôme. Wood density mensuration in tropical trees field manual. Sixth Framework Program. Caxiuã/PA, 2006, 7p. il.
- Condit, R.; Hubbel, S. P.; Foster, R. B. 1995. Demography and harvest potential of Latin American timber species: data from a large, permanent plot in Panama. *Journal of Tropical Forest Science*, 7(4): 599-622.
- Costa, M.L., D.C. Kern, H. Behling, M.S. Borges. 2002. Geologia. Pp. 179-206. In: P.L.B. Lisboa (org.). *Caxiuanã, Populações Tradicionais, Meio Físico e Diversidade Biológica*. Belém Pará. 734 pp.
- Cunha, U. S., Machado, S. A, Figueiredo Filho, A., Sanquetta, C. R. 2002. Predição da estrutura diamétrica de espécies comerciais de terra-firme na Amazônia por meio de Matriz de transição. *Ciência Florestal*, 12 (1):109-122.
- Détienne, P. 1976. Nature et périodicité des cernes dans le bois d'Iroko. Nogent-sur-Marne, Centre techinque Forestier Tropical. 20 pp.
- Détienne, P. 1989. Appearance na periodicity of growth rings in some tropical woods. *IAWA Bulletin*. 10(2):123-132.
- Enright, N.; Ogden, J. 1979 .Applications of transition matrix models in forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New Zeland. *Australian Journal of Ecology*, 4: 3-23.
- Ferri, M.G. 1979. Fisiologia Vegetal. Editora Pedagógica, v.2, segunda edição. São Paulo, 401pp.
- Fearnside, P. M., 1997. Wood density for estimating Forest biomass in Brazilian Amazonia. *Forest Ecology and Management*, 90:59–87.
- Forest Products Laboratory (FPL), 1999. Wood handbook—Wood as na engineering material.

 Gen. Tech. Rep. FPL–GTR–113. Madison, WI: U.S. Department of Agriculture (USDA), Forest Service, Forest Products Laboratory. 463 p. il.
- Freitas, J.V.; Higuchi, N. 1993. Projeções da distribuição diamétrica de uma floresta tropical úmida de terra firme pela cadeia de Markov. *In: CONGRESSO FLORESTAL*

- BRASILEIRO E I CONGRESSO FLORESTAL PANAMERICANO, 1993, Curitiba. Anais. Curitiba: S.B.S./ S.B.E.F, (2): 545-548.
- Fritts, H. C; Smith, D. G.; Stokes, M. A. 1965: The biological model for paleoclimatic interpretation of Mesa Verde tree-ring series. *American antiquity*. 31(2/2): 101-121.
- Higuchi, N. 1987. Short-term growt of an undisturbed tropical moist forest in the brazilian amazon. PhD. Dissertation. Michigan State University Department of Forestry. 129pp.
- Higuchi, N.; Santos, J. dos; Nakamura, S.; Chambers, J.; Ribeiro R. J.; Silva, R. P.; Rocha, R. M. 2000. Dinâmica da floresta primária da bacia do Rio Cuieiras (AM), entre 1996 e
 2000. In: ESTUDOS PARA MANEJO FLORESTAL E RECUPERAÇÃO DE ÁREAS DEGRADADAS: WORKSHOP INTERMEDIÁRIO DO PROJETO JACARANDA FASE II. Manaus, Anais. INPA, p. 10.
- Husch, B.; Miller, C.I.; Beers, T.W. 1982. Forest Mensuration. 3^a ed. John Wiley e Sons. New York.
- Hansmann, C., Wimmer, W.G.R., Teichinger, A., 2002. Permeability of wood A review. *Drevársky výskum*, 47: 1–16.
- Hall, R.C. 1944. A vernier tree-growth band. *Journal of Forestry*, 42:742-743.
- Holdaway, M. R. 1987. The relation between tree diameter growth and climate in the Lake State. *USDA Forest Service NC General Technical Report*, 490-497.
- Intergovernamental Panel on Climate Change (IPCC). Disponível em: < http://www.ipcc.ch/>. Acesso em: 24 Mar. 07.
- Keeland, B.D.; Sharitz, R.R. 1993. Accuracy of tree growth measurements using dendrometer bands. *Canadian Journal of Forest Research*, 23: 2454-2457
- Kern, D. C. Geoquímica e pedogeoquímica de sítios arqueológicos com terra preta na floresta nacional de Caxiuanã (Portel-Pa). Tese de Doutorado. Centro de Geociências, Universidade Federal do Pará Belém, 1996.124p
- Kern, D.C. e M.L. Costa. 1997. Os solos antrópicos. Pp. 105-119. *In:* P.L.B. Lisboa (org.). *Caxiuanã*. Belém Pará, 1997, 446p. il.

- Kern, D.C., D'Aquino, G., Rodrigues, T.E., Frazão, F.J.L.; Sombroek, W.; Myers, T.P., Neves, E.G. 2003a. Distribution of Amazonian Dark Earths in the Brazilian Amazon.
 In: J. Lehmann, D.C. Kern, B. Glaser, e W.I. Woods (eds) Amazonian Dark Earths: origin, properties, Management. The Netherlands: Kluwer Academic Publishers.51-75p.
- Komiyama, A., Inoue, S., Ishikawa, T. 1987. Characteristics of the seasonal diameter growth twenty-five species of deciduous broadleaved trees. *Journal of Japanese Forestry Society*, 69: 379-385.
- Lieberman, M.; Lieberman, D. 1985a. Simulation of growth curves form periodic increment data. *Ecology*, 66(2): 632-635.
- Lisboa, P.L.B., S.S. Almeida, A.S.L. Silva. 1997. **Caxiuanã**. Belém, Museu Paraense Emilio Goeldi, 1:163-204 pp.
- López-Ayala, J. L., Valdez-Hernández, J. I., Terrazas, T., Valdez-Lazalde, J. R. 2006. Crecimiento en diámetro de especies arbóreas en una selva mediana subcaducifolia en Colima, México. *Agrociencia*, 40:139-147.
- Laboratório de Produtos Florestais (LPF). Disponível em: http://www.ibama.gov.br/lpf/madeira/pesquisa.php?idioma=portugues. Acesso em : 22/01/2008
- Mariaux, A. 1969. La périodicité des cernes dans le bois de Lima. *Bois et Forêts dês tropiques*. Nogent-sur-Marne. 128: 39-53.
- Mariaux, A. 1970. La périodicité de formation des cernes dans le bois de l'Oukoume. *Bois et Forêts des tropiques*. Nogent-sur-Marne. 131: 37-50.
- Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., Meir, P., Chave, J., Almeida, S., Arroyo, L., Higuchi, N., Killeen, T., Laurance, S,G., Laurance, W,F., Lewis, S., Monteagudo, A., Neill, D. A., Vargas, P,N., Pitman, N. C. A., Quesada, C. A., Salomão, R., Silva, J. N. M., Lezaman, A. T., Terborgh, J., Martínez, R. V., Vinceti, B., 2006. The regional variation of aboveground live biomass in old-growth Amazonian forests, *Global Change Biology*, 12: 1107–1138.

- Masterplaste. Disponível em http://www.fitasplasticas.com.br/produtos.html. Acesso em: 24 mar. 07.
- Melo, J. E.; Coradim, V. T. R.; Mendes, J. C. 1990. *Classes de densidade para madeiras da Amazônia brasileira. In:* Congresso Florestal Brasileiro, 6. Campos do Jordão, Anais: SBS/SBEF, p. 695-699.
- Mendonça, A. C. A. 2003. Caracterização e simulação dos processos dos processos dinâmicos de uma área de floresta tropical de terra-firme utilizando matrizaes de transição. In: Master's Thesis. Universidade Federal do Paraná. Curitiba, Paraná, 76 pp.
- Meinzer F.C. 2003. Functional convergence in plant responses to the environment. *Oecologia* 134: 1 11.
- Moraes, J. C.; Costa, J. de P. R.; Rocha, E. J. P. e Silva, I. M. O. 1997. Estudos hidrometeorológicos na bacia do rio Caxiuanã. *In*: Lisboa, P. L. B. (org). *Caxiuanã*. CNPQ/Museu Paraense Emílio Goeldi, Belém, p.85-95.
- Moscovich, F. A. 2004. *Modelos de crecimiento y produccíon forestal*. Instituto Nacional de Tecnología Agropecuárea (INTA). Estacíon Experimental Agropecuaria Monte Carlo (EEA) Informe técnico nº 55, 42 pp.
- Museu Paraense Emílio Goeldi. Estação Científica Ferreira Penna. Disponível em: < http://www.museu-goeldi.br/ecfpn/flona.html>. Acesso em: 06 mar. 2007.
- Osho, J. S. A. 1991. Matrix model for tree population projection in a tropical rain forest of south-western Nigeria. *Ecol. Model.* 59: 247-255.
- Peden, L. M., Williams, J. S. Frayer, W. E. 1973. A Markov model for stand projection. *Forest Science*, 19:303-14.
- Peng, C. H. 2000 . Growth and yeld models for uneven-aged stands: past, present and future. *For. Ecol. Management*, 132(2/3):259-279.
- Phillips, O., Baker, T. R. 2002. Rainfor Field Manual. Disponível em: http://www.geog.leeds.ac.uk/projects/rainfor/projdocs.html>. Acesso em: 07 mar. 2007.

- Prodan, M.; Peters, R.; Cox, F.; Real, P. 1997. Mensura Forestal. San José, Costa Rica, 561pp.
- Project for the Advancement of Networked Science in Amazonia (PAN-AMAZONIA).

 Disponível em: <
 http://www.eci.ox.ac.uk/research/ecodynamics/panamazonia/index.html>. Acesso em:
 07 de Março de 2007.
- Pulz, F. A.; Scolforo, J. R.; Oliveira, A. D.; Mello, J. M.; Oliveira Filho, A. T. 1999. Acuracidade da predição da distribuição diamétrica de uma floresta inequiânea com a matriz de transição. *Revista Cerne*, 5(1): 01-14.
- Reyes, G., S. Brown, J. Chapman, and A. E. Lugo., 1992. *Wood densities of tropical tree species*. General Technical Report SO-88. USDA Forest Service, Southern Forest Experiment Station, New Orleans, Louisiana, USA.
- Rice, A. H., Pyle, E. H., Saleska, S. R., Hutyra, L., Palace, M., Keller, M., Camargo, P. B.,Portilho, K., Marques, D. F., Wofsy, S. C. 2004. Carbon balance and vegetation dynamics in an old-growth amazon forest. *Ecol. Applications*. 14(4):55-71.
- Roderick, M.L., 2001. Linking wood density with tree growth and environment: a theoretical analysis based on the motion of water. *New Phytology*, 149: 473–485.
- Sallenave, P., 1971. *Propriétés Physiques et Mécaniques des Bois Tropicaux*. Deuxi-egraveme Supplément. CTFT, Nogent sur. Marne, France.
- Sanquetta, C. R., Brena, D. A., Angelo, H., Mendes, J. B. 1996a. Matriz de transição para simulação de dinâmica de florestas naturais sob diferentes intensidades de corte. *Ciência Florestal*,.6(.1):65-78.
- Sanquetta, C. R., Brena, D. A., Angelo, H.; Brena, D.A. 1996b. Predição da distribuição diamétrica, mortalidade e recrutamento de floresta natural com matriz Markoviana de potência. *Revista Floresta*, 24 (1/2): 23-26.
- Scolforo, J. R. S. 1997. *Manejo Florestal*. Lavras : Fundação de apoio ao ensino, pesquisa e extensão FAEPE,. 438pp.

- Scolforo, J. R. S., Pulz, F. A., Mello, J. M., Oliveira Filho, A. T. 1996. Modelo de pro produção para floresta nativa com base para manejo sustentado. *Revista Cerne*, 2(1) Disponível em: <www.dcf.ufla.br/CERNE/revistav2n1-1996/CERNE1.PDF>. Acesso em: 10 de fev. 2007.
- Scolforo, J. R. S. 1998. Modelagem do crescimento e da produção de florestas plantadas e nativas. *UFLA/FAEPE*, p. 381-391.
- Silva, J. N. M. 2001. *Manejo Florestal*. 3ª ed. rev e aum. Embrapa Informação Tecnológica. Embrapa Amazônia Oriental. Belém, Pará, 49 pp.
- Silva, R. P., Nakamura, S., Azevedo, C. P., Chambers, J.Q., Rocha, R. M., Pinto, A. C. M., Santos, J., Higuchi, N. 2003. Uso de bandas dendrométricas na definição de padrões de crescimento individual m diâmetro de árvores da bacia do rio Cuieiras. *ACTA Amazonica*, 33(1):67-84.
- Silva, R.P.; Santos, J.; Tribuzy, E.S.; Chambers, S.N.; Higuchi, N. 2002. Diameter increment and growth patterns for individual tree growing in Central Amazon, Brazil. *For. Ecol. Management*, 166: 295-301.
- Spathelf, P.; Durlo, M. A. 2001. Transition matrix for modeling the dynamics of a subtropical seminatural forest in southern Brazil. *Forest Ecology and Management*, (151): 139-149.
- Teixeira, L. M., Chambers, J. Q.; Silva, A. R.; Lima, A. J. N.; Carneiro, V. M. C.; Santos, J.; Higuchi, N. 2007. Projeção da dinâmica da floresta natural de terra-firme, região de Manaus AM, com o uso da cadeia de transição probabilística de Markov. Acta Amazônica, (37)3: 377 384.
- Usher, M. B. 1966. A matrix approach to the management of renewable resources, with special reference to selection forests. *J. Appl. Ecol.* (3): 355-367.
- Vaccaro, S., Finger, C. A. G., Schneider, P. R., Longhi, S. J. 2003. Incremento em área basal de árvores de uma floresta estacional decidual, em três fases sussecionais, no municípoio de Santa Tereza-RS. *Ciência Florestal*, 13(2):131-142.
- Vanclay, J.K. 1994. *Modelling forest growth and yield*: Applications to mixed tropical forests. Cab International, Wallingford, UK. 280 pp.

- Vanclay, J.K. 1995. Growth models for tropical forests: a synthesis of models and methods. *Forest Science*, 41:7-42.
- Vetter, R. E., Botosso, P. C. 1988. Observações preliminares sobre a periodicidade e taxa de crescimento em árvores tropicais. *ACTA Amazonica*. 10(2):133-145.
- Vieira, S. A., 2003. Mudanças globais e taxa de crescimento arbóreo na Amazônia. *Doctor thesis*, USP-CENA/Piracicaba, 103p. : il.
- Vieira, S., Trumbore S., Camargo, P. B., Selhorst D., Chambers J. Q., Higuchi, N., Martinelli, L. A., 2006. Slow growth rates of Amazonian trees: Consequences for carbon cycling, *PNAS*, 102 (51), 18502–18507.
- Von Ende, C. N., 2001. Repetead-Measures Analysis: Growth and Other Time-Dependent Measures, Scheiner, S. M.; Vincent, J. F. (Eds). Design and Analysis of Ecological Experiments, Yale University Press, p. 134 – 157.
- Worbes, M. 2001. Short script on: Forest Growth in the Tropics. Freiburg, 23p. Disponível em:<www.tropical-resources.uni-goettingen.de/uploads/media/shortscript2002_01.pdf >. Acesso em: 19 fev. 2007.
- Worbes, M. 1989. Growth rings, increment and age of trees in inundation forests, savannas and and a mountain forest in the Neotropics. *IAWA Bulletin*, n.s. 10, 109-122.

9. ANEXO I

Lista de espécies inventariadas na área de Terra preta antropogênica (TPA)

N	Espécie	Autor	Família	DAP(cm)	IPA(cm)
1	Alchornea fluviatilis	R. Secco	EUPHOR	11,10	0,936
2	Apeiba tibourbou	Aubl.	TILIA	17,70	0,905
3	Apeiba tibourbou	Aubl,	TILIA	18,90	0,413
4	Apeiba tibourbou	Aubl,	TILIA	13,10	0,143
5	Apeiba tibourbou	Aubl,	TILIA	23,60	0,323
6	Apeiba tibourbou	Aubl,	TILIA	15,50	0,000
7	Apeiba tibourbou	Aubl,	TILIA	18,00	0,000
8	Apeiba tibourbou	Aubl,	TILIA	35,30	0,106
9	Astronium sp,	-	ANAC	33,00	0,328
10	Bellucia grossulariodes	(L,) Triana	MELAST	11,10	0,026
11	Bellucia grossulariodes	(L,) Triana	MELAST	11,80	0,148
12	Bellucia grossulariodes	(L,) Triana	MELAST	24,10	0,000
13	Bertholetia excelsa	H, B, K,	LECYT	91,60	2,000
14	Bertholetia excelsa	H, B, K,	LECYT	14,10	1,365
15	Bertholetia excelsa	H, B, K,	LECYT	13,40	0,190
16	Bertholetia excelsa	H, B, K,	LECYT	38,00	0,270
17	Bertholetia excelsa	H, B, K,	LECYT	15,80	0,444
18	Bertholetia excelsa	H, B, K,	LECYT	21,00	1,137
19	Bertholetia excelsa	H, B, K,	LECYT	17,40	-0,101
20	Bertholetia excelsa	H, B, K,	LECYT	12,80	0,063
21	Bertholetia excelsa	H, B, K,	LECYT	16,10	1,248
22	Bertholetia excelsa	H, B, K,	LECYT	22,30	-0,111
23	Bertholetia excelsa	H, B, K,	LECYT	15,10	0,804
24	Bertholetia excelsa	H, B, K,	LECYT	21,70	0,026
25	Bertholetia excelsa	H, B, K,	LECYT	16,70	0,407
26	Bertholetia excelsa	H, B, K,	LECYT	11,70	0,085
27	Bertholetia excelsa	H, B, K,	LECYT	11,50	0,471
28	Bertholetia excelsa	H, B, K,	LECYT	12,40	0,238
29	Bertholetia excelsa	H, B, K,	LECYT	16,20	-0,074
30	Bertholetia excelsa	H, B, K,	LECYT	130,00	2,994
31	Bertholetia excelsa	H, B, K,	LECYT	67,50	0,809
32	Bertholetia excelsa	H, B, K,	LECYT	33,60	0,275
33	Bertholetia excelsa	H, B, K,	LECYT	27,40	0,878
34	Bertholetia excelsa	H, B, K,	LECYT	51,50	0,222
35	Bertholetia excelsa	H, B, K,	LECYT	91,00	0,243
36	Bertholetia excelsa	H, B, K,	LECYT	65,00	0,153
37	Bertholetia excelsa	H, B, K,	LECYT	21,00	0,582
38	Bertholetia excelsa	H, B, K,	LECYT	55,70	0,492
39	Bertholetia excelsa	H, B, K,	LECYT	19,80	1,280
40	Byrsonima cf, crispa	Juss,	MALPI	22,50	1,735
41	Carapa guianensis	Aubl,	MELI	28,00	0,577
42	Carapa guianensis	Aubl,	MELI	15,50	0,381
43	Carapa guianensis	Aubl,	MELI	27,40	0,968

44	Carapa guianensis	Aubl,	MELI	20,70	0,460
45	Casearia arborea	(L, C, Rich,) Urban	GUTT	10,40	1,576
46	Casearia arborea	(L, C, Rich,) Urban	FLACOU	10,20	0,101
47	Casearia javitensis	H, B, K,	FLACOU	10,50	0,000
48	Cassia fastuosa	Willd, ex Benth,	LEG,CAES	17,00	0,957
49	Cassia fastuosa	Willd,	LEG,CAES	35,20	0,000
50	Cecropia obtusa	D, Don,	BIGNO	25,00	1,127
51	Ceiba pentandra	Gaertn,	BOMBAC	200,00	0,000
52	Ceiba pentandra	Gaertn,	BOMBAC	190,00	0,926
53	Chomelia pohliana	M, Arg,	RUBIA	16,30	2,306
54	Citrus sinescens	(L,) Osbeck	RUTAC	13,50	0,799
55	Citrus sinescens	(L,) Osbeck	RUTAC	17,70	0,000
56	Citrus sinescens	(L,) Osbeck	RUTAC	18,30	0,920
57	Citrus sinescens	(L,) Osbeck	RUTAC	11,30	0,000
58	Citrus sinescens	(L,) Osbeck	RUTAC	13,20	0,175
59	Citrus sinescens	(L,) Osbeck	RUTAC	17,00	0,926
60	Citrus sinescens	(L,) Osbeck	RUTAC	16,00	0,286
61	Citrus sinescens	(L,) Osbeck	RUTAC	14,50	0,185
62	Citrus sinescens	(L,) Osbeck	RUTAC	25,30	1,074
63	Citrus sinescens	(L,) Osbeck	RUTAC	10,50	0,175
64	Citrus sinescens	(L,) Osbeck	RUTAC	11,60	0,016
65	Citrus sinescens	(L,) Osbeck	RUTAC	13,40	0,085
66	Citrus sinescens	(L,) Osbeck	RUTAC	11,80	0,450
67	Cochlospermum orinocenses	(Kunth,) Steud,	COCHL	24,60	0,095
68	Cochlospermum orinocenses		COCHL	23,40	0,809
69	Coutarea hexandra	(Jack,) K, Schum	RUBIA	10,50	0,000
70	Coutarea hexandra	(Jack,) K, Schum	RUBIA	12,20	0,799
71	Coutarea hexandra	(Jack,) K, Schum	RUBIA	10,10	0,868
72	Coutarea hexandra	(Jack,) K, Schum	RUBIA	13,50	1,100
73	Coutarea hexandra	(Jack,) K, Schum	RUBIA	13,80	1,407
74	Coutarea hexandra	(Jack,) K, Schum	RUBIA	10,00	1,529
75	Coutarea hexandra	(Jack,) K, Schum	RUBIA	11,00	2,089
76	Coutarea hexandra	(Jack,) K, Schum	RUBIA	11,10	1,222
77	Coutarea hexandra	(Jack,) K, Schum	RUBIA	13,40	0,518
78	Coutarea hexandra	(Jack,) K, Schum	RUBIA	20,00	0,000
79	Coutarea hexandra	(Jack,) K, Schum	RUBIA	10,40	0,645
80	Coutarea hexandra	(Jack,) K, Schum	RUBIA	21,70	0,677
81	Coutarea hexandra	(Jack,) K, Schum	RUBIA	13,10	0,169
82	Coutarea hexandra	(Jack,) K, Schum	RUBIA	12,70	0,619
83	Coutarea hexandra	(Jack,) K, Schum	RUBIA	10,70	1,645
84	Coutarea hexandra	(Jack,) K, Schum	RUBIA	13,00	0,339
85	Coutarea hexandra	(Jack,) K, Schum	RUBIA	11,70	1,386
86	Coutarea hexandra	(Jack,) K, Schum	RUBIA	12,40	0,000
87	Coutarea hexandra	(Jack,) K, Schum	RUBIA	15,00	1,074
88	Coutarea hexandra	(Jack,) K, Schum	RUBIA	13,00	1,296
89	Coutarea hexandra	(Jack,) K, Schum	RUBIA	11,20	0,661
90	Coutarea hexandra	(Jack,) K, Schum	RUBIA	10,30	0,413
91	Coutarea hexandra	(Jack,) K, Schum	RUBIA	12,60	0,058
92	Coutarea hexandra	(Jack,) K, Schum	RUBIA	12,70	1,084
93	Coutarea hexandra	(Jack,) K, Schum	RUBIA	16,00	1,375
94	Coutarea hexandra	(Jack,) K, Schum	RUBIA	15,10	0,000
95	Coutarea hexandra	(Jack,) K, Schum	RUBIA	12,40	0,000
96	Coutarea hexandra	(Jack,) K, Schum	RUBIA	12,50	0,249

97	Coutarea hexandra	(Jack,) K, Schum	RUBIA	11,50	0,000
	Crepidospermum				
98	goudotianum	(Tul,) Tr, & PL,	BURSE	15,70	1,047
	Crepidospermum				
99	goudotianum	(Tul,) Tr, & PL,	BURSE	17,70	0,920
	Crepidospermum				
100	goudotianum	(Tul,) Tr, & PL,	BURSE	11,20	0,540
	Crepidospermum				
101	goudotianum	(Tul,) Tr, & PL,	BURSE	18,40	0,079
	Crepidospermum				
102	goudotianum	(Tul,) Tr, & PL,	BURSE	10,80	1,418
	Crepidospermum				
	goudotianum	(Tul,) Tr, & PL,	BURSE	15,70	0,905
	Cupania scrobiculata	L, C, Rich,	SAPIN	11,00	0,376
	Cupania scrobiculata	L, C, Rich,	SAPIN	16,50	-0,053
	Cupania scrobiculata	L, C, Rich,	SAPIN	11,00	0,444
	Cupania scrobiculata	L, C, Rich,	SAPIN	11,80	1,084
108	Cupania scrobiculata	L, C, Rich,	SAPIN	10,20	0,238
	Dialum guianensis	Aubl,	LEG,PAP	60,00	0,074
110	Dialum guianensis	Aubl,	LEG,PAP	11,00	0,555
111	Dialum guianensis	Aubl,	LEG,PAP	14,20	0,296
112	Fagara rhoifolia	(Lam,) Engl,	RUTAC	11,50	0,000
113	Fagara rhoifolia	(Lam,) Engl,	RUTAC	14,00	0,328
114	Fagara rhoifolia	(Lam,) Engl,	RUTAC	19,40	1,910
115	Fagara rhoifolia	(Lam,) Engl,	RUTAC	14,10	0,000
	Guarea sp,	-	MELI	25,70	1,709
117	Guatteria schomburgkiana	Mart,	ANNO	12,60	1,021
	Guettarda spruceana	Muell, Arg,	RUBIA	12,20	0,587
	Guettarda spruceana	Muell, Arg,	RUBIA	11,70	0,323
120	Guettarda spruceana	Muell, Arg,	RUBIA	44,40	0,222
	Guettarda spruceana	Muell, Arg,	RUBIA	25,30	0,376
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	27,90	0,783
123	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	17,80	0,169
124	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	16,10	1,185
125	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	46,00	-0,090
126	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	10,90	0,598
127	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	14,50	0,942
128	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	16,80	0,069
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	28,90	0,793
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	16,20	0,529
131	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	30,30	0,719
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	19,30	0,709
133	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	22,00	1,158
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	11,10	0,000
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	11,00	0,772
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	18,50	0,809
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	20,60	0,614
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	10,70	-0,058
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	11,20	0,000
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	12,60	0,063
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	15,50	0,212
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	29,50	1,328
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	25,90	1,359
		, , , , , , , , , , , , , , , , , , , ,		,	,

	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	62,40	0,280
145	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	16,50	0,629
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	47,60	0,175
147	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	14,20	0,227
148	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	23,20	0,275
149	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	22,60	1,296
150	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	15,30	0,852
151	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	14,70	0,222
152	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	18,80	0,841
153	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	15,10	0,032
154	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	30,70	0,190
155	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	11,90	0,037
156	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	22,40	0,307
157	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	17,40	0,000
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	12,50	0,545
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	43,40	0,857
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	13,50	0,000
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	12,20	0,106
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	12,30	0,222
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	12,00	-0,095
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	30,50	0,492
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	11,50	0,079
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	11,00	0,000
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	16,00	0,159
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	19,00	0,133
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	14,30	0,333
	Hevea brasiliensis	* ' '	EUPHOR	15,10	0,328
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller (Willd, ex Adr, de Juss,) Mueller	EUPHOR	11,10	0,122
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	33,80	1,555
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR		
	Hevea brasiliensis			16,60	1,624
		(Willd, ex Adr, de Juss,) Mueller	EUPHOR	25,30	0,000
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	13,80	0,000
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	20,10	1,777
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	18,40	1,486
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	26,80	0,132
	Hevea brasiliensis	(Willd, ex Adr, de Juss,) Mueller	EUPHOR	19,60	0,555
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	20,70	0,339
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	13,00	-0,058
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	33,90	0,492
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	36,00	0,529
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	11,40	1,021
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	11,90	0,227
	Himatanthus sucuuba	Spruce ex, M, Arg,	RUBIA	14,60	-0,053
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	11,60	0,677
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	14,70	0,772
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	14,20	0,180
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	17,70	0,048
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	24,20	0,000
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	10,30	0,809
	Himatanthus sucuuba	Spruce ex, M, Arg,	APOCY	10,90	0,000
	Hymenaea courbaril	L,	LEG,CAES	12,20	0,963
195	Inga brachystachys	Ducke	LEG,MIM	15,30	0,381
196	Inga edulis	Mart,	LEG,MIM	17,30	0,730

	Inga edulis	Mart,	LEG,MIM	17,60	0,000
	Inga heterophylla	Willd,	LEG,MIM	10,10	0,000
199	Inga heterophylla	Willd,	LEG,MIM	13,20	0,000
	Jacaranda copaia	D, Don,	BIGNO	14,80	0,402
201	Jacaranda copaia	D, Don,	BIGNO	21,10	1,471
202	Jacaranda copaia	D, Don,	BIGNO	14,00	0,138
203	Jacaranda copaia	D, Don,	BIGNO	20,00	0,164
204	Jacaranda copaia	D, Don,	BIGNO	18,60	0,793
205	Jacaranda copaia	D, Don,	BIGNO	19,50	0,492
	Jacaranda copaia	D, Don,	BIGNO	30,70	1,270
	Jacaranda copaia	D, Don,	BIGNO	29,90	-0,106
	Jacaranda copaia	D, Don,	BIGNO	11,30	0,053
	Jacaranda copaia	D, Don,	BIGNO	24,40	-0,101
	Jacaranda copaia	D, Don,	BIGNO	23,70	1,545
	Jacaranda copaia	D, Don,	BIGNO	22,30	2,148
	Jacaranda copaia	D, Don,	BIGNO	15,70	1,561
	Jacaranda copaia	D, Don,	BIGNO	21,80	0,423
	Jacaranda copaia	D, Don,	BIGNO	26,60	0,000
			BIGNO	13,90	0,000
	Jacaranda copaia	D, Don,			
	Jacaranda copaia	D, Don,	BIGNO	38,00	0,196
	Jacaranda copaia	D, Don,	BIGNO	22,00	1,444
	Jacaranda copaia	D, Don,	BIGNO	37,20	1,566
	Lacmellea aculeata	(Ducke) Monach,	APOCY	10,00	0,455
	Lecythis lurida	(Miers,) Mori	LECYT	16,70	0,000
	Lecythis pisonis	Cambess,	LECYT	10,30	0,704
	Lecythis pisonis	Cambess,	LECYT	13,50	0,000
	Lecythis pisonis	Cambess,	LECYT	15,50	-0,095
	Lecythis pisonis	Cambess,	LECYT	13,90	0,000
225	Licania octandra	(Hoffmanns ex, R, S,) Kuntze	CHRYS	11,30	0,132
226	Maprounea guianensis	Aubl,	EUPHOR	12,00	1,412
227	Maquira guianensis	Aubl,	MORAC	12,50	0,947
228	Maquira guianensis	Aubl,	MORAC	10,10	0,619
	Maquira guianensis	Aubl,	MORAC	10,70	-0,079
	Maquira guianensis	Aubl,	MORAC	13,80	0,138
	Maquira guianensis	Aubl,	MORAC	10,70	0,444
	Maquira guianensis	Aubl,	MORAC	28,00	0,000
	Maquira guianensis	Aubl,	MORAC	12,40	0,746
	Maquira guianensis	Aubl,	MORAC	14,10	-0,111
	Maquira guianensis	Aubl,	MORAC	13,70	0,116
	Maquira guianensis	Aubl,	MORAC	12,20	0,376
	Maquira guianensis	Aubl,	MORAC	12,40	0,349
	Maquira guianensis	Aubl,	MORAC	10,40	0,952
	Margaritaria nobilis	L, F,	EUPHOR	10,30	0,275
	Margaritaria nobilis	L, F,	EUPHOR	13,50	0,291
	Margaritaria nobilis	L, F,	EUPHOR	16,80	1,518
	Margaritaria nobilis	L, F,	EUPHOR	16,30	0,603
	Margaritaria nobilis	L, F,	EUPHOR	13,00	0,212
	Margaritaria nobilis	L, F,	EUPHOR	11,20	0,000
	Margaritaria nobilis	L, F,	EUPHOR	11,20	0,000
	Margaritaria nobilis	L, F,	EUPHOR	12,60	0,153
247	Margaritaria nobilis	L, F,	EUPHOR	14,70	0,524
240					
248	Margaritaria nobilis	L, F,	EUPHOR	16,30	0,196
	Margaritaria nobilis Margaritaria nobilis	L, F, L, F,	EUPHOR EUPHOR	16,30 12,00	0,196 0,450

250	Managaritania	I E	ELIDIJOD	15.00	0.106
	Margaritaria nobilis	L, F,	EUPHOR	15,90	0,106
	Margaritaria nobilis	L, F,	EUPHOR	21,00	0,000
	Maytenus cf, myrsinoides	Reiss,	CELAST	12,10	0,000
	Maytenus cf, myrsinoides	Reiss,	CELAST	11,30	0,354
	Mora paraensis	(Ducke) Ducke	LEG,CAES	10,20	0,592
	Mouriri guianensis	Aubl,	MELAST	10,40	0,582
	Mouriri guianensis	Aubl,	MELAST	10,20	1,037
257	Myrcia fallax	(Rich,) DC,	MYRTA	14,80	0,566
	Myrcia fallax	(Rich,) DC,	MYRTA	12,00	1,111
259	Neea cf, madeirana	Standl,	NYCTA	13,80	1,180
260	Ocotea glomerata	(Nees) Mez,	LAURAC	21,40	0,048
261	Ocotea glomerata	(Nees) Mez	LAURAC	12,50	1,402
262	Ocotea glomerata	(Nees) Mez	LAURAC	21,90	0,376
	Parkia sp,	-	LEG,MIM	10,80	0,175
	Platonia insignis	Mart,	GUTT	26,80	1,148
	Pogonophora				-,
265	schomburgkiana	Miers ex, Benth,	EUPHOR	10,80	0,275
	Poraqueiba guianensis	Aubl,	ICACI	14,30	0,492
	Poraqueiba guianensis	Aubl,	ICACI	20,40	1,069
	Poraqueiba guianensis	Aubl,	ICACI	18,40	0,386
	Poraqueiba guianensis	Aubl,	ICACI	14,90	0,380
	<u>.</u>	Audi,	ANAC		0,391
	Poupartia sp,	(I) F		13,00	
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	29,10	1,026
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	19,70	0,201
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	25,30	1,137
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	28,80	1,243
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	11,80	1,127
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	19,30	0,947
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	40,50	0,127
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	28,20	0,175
279	Pouteria macrophylla	(Lam,) Eyma	SAPOT	25,70	1,386
280	Pouteria macrophylla	(Lam,) Eyma	SAPOT	57,00	0,000
281	Pouteria macrophylla	(Lam,) Eyma	SAPOT	12,80	0,000
282	Pouteria macrophylla	(Lam,) Eyma	SAPOT	20,50	0,836
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	13,20	0,264
-	Pouteria macrophylla	(Lam,) Eyma	SAPOT	20,60	0,667
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	13,80	0,264
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	17,30	-0,058
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	10,50	0,238
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	10,00	0,545
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	13,10	0,920
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	10,60	0,227
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	14,90	-0,053
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	13,30	0,032
	Pouteria macrophylla		SAPOT	12,60	1,910
	1 7	(Lam,) Eyma			
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	13,80	0,138
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	43,80	0,756
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	26,50	0,138
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	51,30	0,317
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	12,60	0,169
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	16,20	1,169
	Pouteria macrophylla	(Lam,) Eyma	SAPOT	19,10	1,153
301	Pouteria macrophylla	(Lam,) Eyma	SAPOT	14,00	0,196

302	Pouteria macrophylla	(Lam,) Eyma	SAPOT	11,80	0,000
303	Pouteria macrophylla	(Lam,) Eyma	SAPOT	13,40	0,296
304	Pouteria macrophylla	(Lam,) Eyma	SAPOT	11,60	0,000
305	Pouteria macrophylla	(Lam,) Eyma	SAPOT	11,50	0,307
306	Pouteria macrophylla	(Lam,) Eyma	SAPOT	12,40	0,000
307	Pouteria macrophylla	(Lam,) Eyma	SAPOT	12,40	0,000
308	Pouteria macrophylla	(Lam,) Eyma	SAPOT	12,50	0,317
309	Protium robustum	(Swart,) D, M, Porter	BURSE	11,20	0,979
310	Protium subserratum	(Engl,) Engl,	BURSE	11,80	1,756
311	Rollinia cf, edulis	Tr, & Pl,	ANNO	10,00	1,000
	Rollinia cf, edulis	Tr, & Pl,	ANNO	12,80	1,809
	Rollinia cf, edulis	Tr, & Pl,	ANNO	14,50	0,206
	Rollinia cf, edulis	Tr, & Pl,	ANNO	23,20	1,090
	Sapindus lanceolatum	Hub,	SAPIN	30,30	1,407
	Sapindus saponaria	L,	SAPIN	11,00	1,285
	Sapindus saponaria	L,	SAPIN	15,70	0,217
	Sapindus saponaria	L,	SAPIN	13,40	1,434
	Sapindus saponaria	L,	SAPIN	10,70	0,778
-	Sapindus saponaria	L,	SAPIN	10,70	1,502
	Sapindus saponaria	L,	SAPIN	13,00	1,465
	Sapindus saponaria	L,	SAPIN	21,20	0,185
322	зарінші заронана	(Aubl,) Maguire, Steyerm, &	SALIN	21,20	0,103
323	Schefflera morototoni	Frondin	ARALI	13,90	1,375
323	Scheffiera morototom	(Aubl,) Maguire, Steyerm, &	MALI	13,70	1,373
324	Schefflera morototoni	Frondin	ARALI	11,00	1,412
324	Schejjiera morototoni	(Aubl,) Maguire, Steyerm, &	AKALI	11,00	1,412
325	Schefflera morototoni	Frondin	ARALI	27,50	0,360
323	Scheffiera morototom	(Aubl,) Maguire, Steyerm, &	AKALI	21,50	0,300
326	Schafflara maratatani	Frondin	ARALI	42,80	0,153
	Schefflera morototoni Simaba cedron	Planch,	SIMAROU	10,10	0,000
	Simaba cedron	Planch,	SIMAROU	12,90	0,053
	Simaba cedron	Planch,	SIMAROU	11,10	0,033
	Simaba cedron	Planch,	SIMAROU	11,60	
		· · · · · · · · · · · · · · · · · · ·			0,132
	Spondias mombin	L,	ANAC ANAC	33,70	0,090
	Spondias mombin	L,	ANAC	71,30	-0,032
	Spondias mombin	L,		43,50	1,666
	Spondias mombin	L,	ANAC	19,80	0,000
	Spondias mombin	L,	ANAC	34,40	0,000
	Spondias mombin	L,	ANAC	48,20	0,413
	Spondias mombin	L,	ANAC	18,10	1,016
	Spondias mombin	L,	ANAC	15,00	-0,042
	Spondias mombin	L,	ANAC	18,10	0,344
	Spondias mombin	L,	ANAC	12,30	-0,079
	Spondias mombin	L,	ANAC	13,50	0,672
	Spondias mombin	L,	ANAC	18,90	-0,111
	Spondias mombin	L,	ANAC	21,60	0,201
	Spondias mombin	L,	ANAC	18,20	-0,106
	Spondias mombin	L,	ANAC	33,20	0,148
	Spondias mombin	L,	ANAC	15,60	0,000
	Spondias mombin	L,	ANAC	15,80	-0,085
	Spondias mombin	L,	ANAC	17,50	0,719
	Spondias mombin	L,	ANAC	30,50	1,682
350	Spondias mombin	L,	ANAC	20,00	-0,101

351	Spondias mombin	L,	ANAC	10,40	-0,053
352	Spondias mombin	L,	ANAC	17,80	0,101
353	Spondias mombin	L,	ANAC	13,00	0,000
354	Spondias mombin	L,	ANAC	20,40	0,206
355	Spondias mombin	L,	ANAC	21,00	-0,085
	Spondias mombin	L,	ANAC	18,40	-0,095
	Spondias mombin	L,	ANAC	17,90	1,201
	Spondias mombin	L,	ANAC	18,50	0,979
	Spondias mombin	L,	ANAC	38,50	1,873
	Spondias mombin	L,	ANAC	43,70	1,222
	Spondias mombin	L,	ANAC	15,20	-0,026
	Spondias mombin	L,	ANAC	33,70	1,116
	Spondias mombin	L,	ANAC	37,50	0,973
	Spondias mombin	L,	ANAC	18,70	0,243
	Spondias mombin	L,	ANAC	16,90	0,185
	Spondias mombin	L,	ANAC	19,10	0,487
	Spondias mombin	L,	ANAC	19,60	-0,101
	Spondias mombin	L,	ANAC	13,90	0,349
	Spondias mombin	L,	ANAC	21,90	0,667
	Spondias mombin	L, L,	ANAC	21,30	0,349
	Spondias mombin	L,	ANAC	35,60	-0,079
-	Spondias mombin	L,	ANAC	17,20	0,037
	Spondias mombin	L,	ANAC	24,10	0,645
	Spondias mombin	L,	ANAC	26,20	0,656
	Spondias mombin	L,	ANAC	15,80	-0,079
	Spondias mombin	L,	ANAC	11,50	0,000
	Spondias mombin	L,	ANAC	12,90	0,000
	Spondias mombin	L,	ANAC	29,60	0,714
	Spondias mombin	L,	ANAC	20,50	-0,074
	Spondias mombin	L,	ANAC	28,20	0,873
	Spondias mombin	L,	ANAC	18,20	-0,026
	Spondias mombin	L,	ANAC	27,00	0,555
	Swartzia arborecens	(Aubl,) Pittier	LEG,PAP	11,10	0,476
	Swartzia cf, apetala	Raddi	MALPI	15,40	0,508
	Swartzia cf, apetala	Raddi	LEG,PAP	10,50	0,058
	Tabebuia serratifolia	(Vahl,) Nichols,	BIGNO	28,60	0,545
	Tabebuia serratifolia	(Vahl,) Nichols,	BIGNO	12,30	0,762
	Tabebuia serratifolia	(Vahl,) Nichols,	BIGNO	20,10	0,603
	Talisia sp,	-	SAPIN	11,50	0,619
	Tapirira guianensis	Aubl,	ANAC	15,10	1,312
391	Tapirira guianensis	Aubl,	ANAC	18,50	0,159
392	Tapirira guianensis	Aubl,	ANAC	10,20	0,000
393	Tapirira guianensis	Aubl,	ANAC	11,00	0,386
394	Tapirira guianensis	Aubl,	ANAC	10,70	0,873
395	Terminalia guianensis	Aubl,	COMBRE	12,80	1,746
396	Theobroma grandiflora	(Willd, ex, Spreng,) Schum	STERC	16,80	0,704
397	Theobroma speciosum	Willd, ex, Spreng,	STERC	11,30	0,000
398	Theobroma speciosum	Willd, ex, Spreng,	STERC	11,30	-0,053
	Thyrsodium paraense	Hub,	ANAC	10,30	0,053
	Trichilia tenuiramea	C, DC,	MELI	13,90	0,196

Lista de espécies inventariadas na área de Latossolo amarelo

ID	Espécie	Família	DAP(cm) IP	DAP(cm) IPA(cm)		
1	Abarema jupumba	FABAC	12,40	0,376		
2	Pouteria decorticans	SAPOT	11,30	0,122		
3	Eschweilera sp,	LECYTH	93,40	0,672		
4	Crudia cf, oblonga	FABAC	15,20	0,328		
5	Protium sp,	BURSE	25,90	0,053		
6	Diospyros sp,	EBENA	17,60	0,032		
7	Licania sp,	CHRYSO	39,80	-0,021		
8	Vouacapoua americana	CAESA	37,10	0,090		
9	Diospyros sp,	BURSE	74,30	0,037		
10	Micropholis sp,	SAPOT	27,70	-0,074		
11	Rinorea riania	VIOLAC	10,60	0,000		
12	Crudia oblonga	CAESA	15,80	0,079		
13	Crudia sp,	CAESA	13,60	0,005		
14	Indeterminada	SAPOT	33,00	0,000		
15	Inga gracilifolia	FABAC	21,60	0,185		
16	Vouacapoua americana	CAESA	27,90	0,000		
17	Indeterminada	BURSE	25,30	0,042		
18	Poecilanthes effusa	FABAC	14,30	0,185		
19	Eschweilera sp,	LECYTH	13,20	0,011		
20	Vouacapoua americana	CAESA	51,60	0,053		
21	Inga alba	FABAC	11,90	0,000		
22	Crudia sp,	CAESA	11,90	0,656		
23	Faramea sp,	RUBIA	12,00	0,000		
24	Crudia sp,	CAESA	23,20	0,000		
25	Indeterminada	SAPOT	23,20	0,000		
26	Lecythis idatimon	LECYTH	11,70	0,423		
27	Indeterminada	INDET	11,70	0,402		
28	Eschweilera coriacea	LECYTH	10,50	0,106		
29	Ocotea sp,	LAURA	10,50	0,190		
30	Rinorea riania	VIOLAC	18,00	0,032		
31	Tachigalia sp,	CAESA	10,60	-0,021		
32	Sloanea sp,	ELAEO	14,70	-0,032		
33	Indeterminada	SAPOT	11,20	0,159		
34	Indeterminada	SAPOT	19,10	0,000		
35	Rinorea riania	VIOLAC	10,40	0,153		
36	Eschweilera sp,	LECYTH	42,00	0,000		
37	Indeterminada	SAPOT	24,10	-0,053		
38	Rinorea riania	VIOLAC	14,70	0,344		
39	Rinorea riania	VIOLAC	15,60	0,000		
40	Chimarris sp,	RUBIA	57,50	0,000		
41	Rinorea riania	VIOLAC	11,00	0,497		
42	Licania sp,	CHRYSO	28,40	0,143		
43	Rinorea riania	VIOLAC	12,80	0,423		
44	Licania canescens	CHRYSO	22,80	-0,053		
45	Lecythidaceae Indet,	LECYTH	19,90	0,296		
46	Indeterminada	SAPOT	28,50	0,000		
47	Indeterminada	SAPOT	17,80	0,862		
			. ,	,		

48	Indeterminada	APOCY	60,10	0,333
49	Rinorea riania	VIOLAC	11,90	0,106
50	Rinorea riania	VIOLAC	16,20	0,026
51	Licania sp,	CHRYSO	58,70	0,058
52	Dinisia excelsa	MIMO	11,30	0,000
53	Indeterminada	SAPOT	24,80	0,000
54	Indeterminada	CAESA	27,40	0,238
55	Eschweilera sp,	LECYTH	12,50	0,249
56	Moraceae Indet	MORAC	18,60	0,026
57	Symphonia globulifera	HI	36,00	0,000
58	Eschweilera sp,	LECYTH	13,80	0,074
59	Indeterminada	SAPOT	36,00	0,074
60	Indeterminada	SAPOT	12,90	0,857
61	Indeterminada	SAPOT	37,10	1,058
62	Lecythis idatimon	LECYTH	34,20	0,000
63	Licania canescens	CHRYSO	20,30	0,714
64	Eschweilera grandiflora	LECYTH	35,40	0,333
65	Lecythidaceae Indet,	LECYTH	15,10	0,085
66	Vouacapoua americana	CAESA	19,20	0,021
67	Lauraceae Indet,	LAURA	19,20	0,466
68	Licania sp,	CHRYSO	17,00	0,138
69	Poecilanthes effusa	FABAC	12,70	0,280
70	Indeterminada	FABAC	10,50	-0,074
71	Copaifera sp,	CAESA	38,70	0,836
72	Chimarris turbinata	RUBIA	34,90	-0,053
73	Poecilanthes effusa	FABAC	18,10	0,000
74	Rinorea riania	VIOLAC	12,80	0,000
75	Licania heteromorpha	CHRYSO	19,20	0,264
76	Eschweilera sp,	LECYTH	32,00	0,190
77	Swartzia sp,	CAESA	14,90	0,000
78	Indeterminada	SAPOT	13,80	0,079
79	Vouacapoua americana	CAESA	40,70	0,386
80	Rinorea riania	VIOLAC	14,00	0,185
81	Eschweilera grandiflora	LECYTH	37,70	0,000
82	Indeterminada	INDET	22,00	0,063
83	Vouacapoua americana	CAESA	23,40	0,127
84	Crudia sp,	CAESA	26,80	-0,074
85	Eschweilera sp,	LECYTH	26,80	-0,063
86	Crudia oblonga	CAESA	20,80	0,846
87	Brosimum guianensis	MORAC	15,50	0,000
88	Eschweilera coriacea	LECYTH	34,60	0,000
89	Rinorea riania	VIOLAC	14,70	0,466
90	Parkia sp,	MIMO	10,50	0,090
91	Ocotea caudata	LAURA	16,80	0,132
92	Crudia oblonga	CAESA	15,00	0,021
93	Brosimum guianensis	MORAC	19,00	0,000
94	Sterculia pruriens	STERC	10,20	0,175
95	Virola calophilla	MYRIST	16,60	0,079
96	Terminalia amazonica	COMBRE	16,60	0,000
97	Licania egleri	CHRYSO	37,50	0,000
98	Eschweilera grandiflora	LECYTH	37,80	0,317
99	Tachigalia sp,	CAESA	16,80	0,079
100	Ambelania acida	APOCY	12,70	0,518

101	T: . T .	CHDVCO	51.70	0.100
101	Licania egleri	CHRYSO	51,70	-0,180
102	Licania sp,	CHRYSO	11,00	0,000
103	Pouteria jariensis	SAPOT	14,50	0,138
104	Symphonia globulifera	GUTT	14,00	0,111
105	Ficus nymphaefolia	MORAC	14,00	-0,026
106	Protium sp,	BURSE	11,20	0,159
107	Crudia sp,	CAESA	16,50	-0,085
108	Tetragastris altissimum	BORAG	27,60	0,185
109	Eschweilera pedicelata	LECYTH	12,30	0,143
110	Indeterminada	FABAC	12,30	0,233
111	Ocotea sp,	LAURA	33,70	0,016
112	Indeterminada	SAPOT	14,90	0,127
113	Rinorea riania	VIOLAC	11,40	0,048
114	Indeterminada	INDET	15,80	0,000
115	Indeterminada	INDET	11,90	-0,021
116	Crudia sp,	CAESA	14,20	0,042
117	Indeterminada	FABAC	36,90	-0,106
118	Indeterminada	INDET	26,60	-0,296
119	Manikara bidentata	SAPOT	74,90	-0,127
120	Indeterminada	SAPOT	14,10	0,000
121	Pouteria sp,	SAPOT	49,70	0,000
122	Couratari sp,	LECYTH	33,70	-0,153
123	Indeterminada	SAPOT	18,20	0,005
124		LECYTH		
	Lecythis idatimon		35,50	0,000
125	Crudia sp,	CAESA	11,70	0,048
126	Indeterminada	INDET	13,10	0,349
127	Indeterminada	INDET	13,90	0,032
128	Eschweilera coriacea	LECYTH	31,60	0,032
129	Poecilanthes effusa	FABAC	14,20	0,841
130	Indeterminada	SAPOT	14,70	0,048
131	Pouteria guianensis	SAPOT	17,50	0,090
132	Vouacapoua americana	CAESA	32,40	0,000
133	Vouacapoua americana	CAESA	56,40	0,037
134	Xylopia nitida	ANNO	37,80	0,566
135	Eschweilera coriacea	LECYTH	31,60	0,714
136	Crudia sp,	CAESA	14,30	0,053
137	Lecythis idatimon	LECYTH	37,60	0,053
138	Eschweilera sp,	LECYTH	13,20	0,000
139	Protium apiculatum	BURSE	10,50	0,291
140	Crudia sp,	CAESA	27,80	0,233
141	Rinorea sp,	VIOLAC	15,70	0,185
142	Dipteryx odorata	FABAC	92,30	0,270
143	Swartzia racemosa	CAESA	17,50	0,212
144	Vouacapoua americana	CAESA	39,70	0,185
145	Indeterminada	COMBRE	39,70	0,000
146	Indeterminada	SAPOT	16,30	-0,095
147	Rinorea riania	VIOLAC	13,40	0,000
148	Virola michelli	MYRIST	13,80	0,000
149	Eschweilera grodiflora	LECYTH	41,00	1,455
150	Rinorea riania	VIOLAC	10,20	-0,127
151	Eschweilera sp,	LECYTH	26,80	0,021
152	Eschweilera grandiflora	LECYTH	29,50	0,000
153	Lauraceae Indet,	LAURA	15,50	0,000
133	Lauraceae maei,	LITURI	13,30	0,000

154	Rinorea riania	VIOLAC	14,40	0,111
155	Licania sp,	CHRYSO	15,00	0,095
156	Pouteria sp,	SAPOT	42,20	0,095
157	Ampelocera edentula	ULMA	20,50	0,582
158	Indeterminada	INDET	10,10	0,085
159	Pouteria cladantha	SAPOT	12,00	0,534
160	Licania membranacea	CHRYSO	45,70	0,053
161	Pouteria decorticans	SAPOT	13,70	0,000
162		CHRYSO	35,80	0,000
163	Licania sp, Pouteria anomala	SAPOT	14,00	0,290
164	Manikara bidentata	SAPOT	12,70	0,135
165	Swartzia racemosa	CAESA	53,80	0,183
166		CHRYSO	40,10	0,212
167	Licania membranacea	CHRYSO	17,70	0,291
	Licania sp,			
168	Sterculia pruriens	STERC	15,30	0,000
169	Protium decandrum	BURSE	24,80	0,159
170	Duguetia echinophora	ANNO	16,80	-0,085
171	Pseudopiptadenia suaveolens	FABAC	45,00	-0,159
172	Couratari sp,	LECYTH	10,80	0,212
173	Licania octandra	CHRYSO	16,50	0,000
174	Licania membranacea	CHRYSO	13,40	0,000
175	Licania sp,	CHRYSO	12,50	-0,053
176	Pouteria sp,	SAPOT	12,00	0,000
177	Licania membranacea	CHRYSO	11,50	0,005
178	Rinorea sp,	VIOLAC	23,00	0,090
179	Licania sp,	CHRYSO	45,00	0,090
180	Eschweilera coriacea	LECYTH	15,30	0,026
181	Licania heteromorpha	CHRYSO	10,30	-0,053
182	Guarea cf,	MELI	12,40	-0,069
183	Indeterminada	LEG	13,70	0,053
184	Vouacapoua americana	FABAC	23,20	-0,063
185	Pouteria decandrum	SAPOT	32,40	-0,069
186	Licania sp,	CHRYSO	10,50	0,450
187	Micropholis guianensis	SAPOT	44,50	-0,011
188	Licania sp,	CHRYSO	20,10	0,000
189	Brossimum guianense	MORAC	10,40	-0,116
190	Ocotea sp,	LAURA	14,50	-0,079
191	Apeiba burchellii	TILIA	20,00	0,000
192	Parkia oppositifolia	FABAC	21,80	0,000
193	Cecropia sp,	CECRO	17,30	0,063
194	Cecropia sp,	CECRO	25,10	0,275
195	Aspidosperma cf, destimathum	APOCY	27,00	0,339
196	Pouteria sp,	SAPOT	23,60	0,000
197	Licania sp,	CHRYSO	10,30	0,000
198	Cheiloclinium cognatum	HIPOCRAT	18,50	0,270
199	Licania octandra	CHRYSO	18,30	0,000
200	Pouteria sp,	SAPOT	11,30	0,238
201	Theobroma speciosum	STERC	29,50	-0,063
202	Hirtela bicornis	CHRYSO	22,80	0,333
203	Theobroma speciosum	STERC	10,20	0,000
204	Myrtaceae Indet,	MYRTA	12,00	0,693
205	Eschweilera coriacea	LECYTH	23,00	0,238
206	Licania sp,	CHRYSO	17,30	0,063

207	Indeterminada	SAPOT	31,00	-0,085
208	Guarea cf,	MELI	11,30	0,079
209	Lecythis idatimon	LECYTH	30,80	-0,074
210	Zygia racemosa	MIMO	16,90	-0,042
211	Licania membranacea	CHRYSO	15,90	0,079
212	Parkia sp,	MIMO	13,20	0,222
213	Vouacapoua americana	CAESA	36,90	0,000
214	Diospyros sp,	EBENA	14,20	0,000
215	Indeterminada	INDET	11,80	0,323
216	Couma sp,	APOCY	23,70	0,233
217	Maytenus sp,	CELAST	29,70	0,159
218	Swartzia sp,	CAESA	48,60	-0,116
219	Couratari multiflora	LECYTH	10,30	1,338
220	Ocotea sp,	LAURA	26,60	0,000
221	Pouteria prancei	SAPOT	44,40	0,153
222	Virola michelli	MYRIST	12,90	0,714
223	Eschweilera sp,	LECYTH	12,90	0,053
224	Lecythis idatimon	LECYTH	29,80	0,899
225	Myrtaceae Indet,	MYRTA	12,30	0,000
226	Rinorea riania	VIOLAC	12,70	0,169
227	Stryphnodendron sp,	MIMO	14,50	0,000
228	Goupia glabra	CELAST	11,10	0,000
229	Maquira guianensis	MORAC	11,30	0,000
230	Guatteria poepigiana	ANNO	31,50	0,132
231	Stryphnodendron sp,	MIMO	21,20	0,492
232	Rinorea riania	VIOLAC	14,50	1,746
233	Tetragastris panamenesis	BURSE	15,70	0,635
234	Indeterminada	SAPOT	15,50	0,772
235	Eschweilera sp,	LECYTH	19,60	-0,021
236	Nectandra pulverulenta	LAURA	35,80	0,085
237	Rinorea riania	VIOLAC	13,50	0,344
238	Naucleopsis caloneura	MORAC	14,60	0,000
239	Vouacapoua americana	CAESA	31,80	0,127
240	Eschweilera coriacea	LECYTH	11,60	-0,053
241	Inga sp,	FABAC	19,20	0,545
242	Scheflera morototoni	ARALI	32,10	0,095
243	Symphonia globulifera	GUTT	36,40	0,000
244	Dialium guianensis	CAESA	21,50	0,444
245	Micropholis sp,	SAPOT	13,70	0,592
246	Lecythis idatimon	LECYTH	34,10	-0,053
247	Lecythis idatimon	LECYTH	30,20	1,185
248	Myrtaceae Indet,	MYRTA	31,50	-0,021
249	Rinorea riania	VIOLAC	19,90	0,000
250	Lacistema sp,	LACIST	13,90	0,719
251	Vouacapoua americana	CAESA	36,20	0,428
252	Derris sp,	FABAC	14,00	-0,233
253	Indeterminada	SAPOT	12,70	0,000
254	Trattinichia sp,	BURSE	53,70	0,143
255	Crudia sp,	CAESA	21,90	-0,090
256	Eschweilera pedicelata	LECYTH	10,90	0,000
257	Swartzia racemosa	CAESA	36,10	-0,048
258	Lacmelea aculeata	APOCY	11,10	0,788
259	Rinorea racemosa	VIOLAC	12,30	0,000
			,	

260	D	DUDCE	17.20	0.242
260 261	Protium trifoliolatum	BURSE SAPOT	17,30 20,30	0,243
	Pouteria sp,			
262	Erisma uncinatum	VOCHY	53,00	0,772
263	Pouteria sp,	SAPOT	11,60	0,069
264	Indeterminada	INDET	56,00	-0,063
265	Rinorea riania	VIOLAC	10,80	0,032
266	Vouacapoua americana	CAESA	46,00	1,037
267	Nectandra sp,	LAURA	24,80	0,275
268	Licania sp,	CHRYSO	31,90	0,682
269	Micropholis guianensis	SAPOT	26,60	0,476
270	Pouteria sp,	SAPOT	12,10	-0,111
271	Vouacapoua americana	CAESA	41,80	0,000
272	Pouteria sp,	SAPOT	10,70	0,106
273	Parkia sp,	MIMO	59,40	0,011
274	Lecythis idatimon	LECYTH	30,40	0,058
275	Symphonia globulifera	GUTT	16,90	0,000
276	Saccoglotis sp,	HULMIRIC	12,70	0,000
277	Brosimum guianensis	MORAC	22,50	0,042
278	Inga gracilifolia	FABAC	10,10	0,000
279	Lauraceae Indet,	LAURA	10,70	0,233
280	Rinorea riania	VIOLAC	12,50	0,000
281	Rinorea riania	VIOLAC	10,30	1,121
282	Couratari multiflora	LECYTH	66,70	0,386
283	Lecythis idatimon	LECYTH	41,60	0,000
284	Maquira sclerophilla	MORAC	23,80	0,000
285	Inga sp,	FABAC	11,10	0,122
286	Pouteria oppositifolia	SAPOT	10,30	0,000
287	Licania sp,	CHRYSO	13,30	-0,058
288	Protium apiculatum	BURSE	41,40	-0,116
289	Theobroma subincanum	STERC	14,30	0,296
290	Pourouma sp,	CECRO	24,80	0,111
291	Poecilanthes effusa	FABAC	10,30	0,201
292	Lecythis idatimon	LECYTH	27,40	0,101
293	Tetragastris panamenesis	BURSE	24,20	1,328
294	Vouacapoua americana	CAESA	11,60	0,058
295	Pouteria cf, elegans	SAPOT	33,80	0,053
296	Diospyros sp,	EBENA	11,70	0,053
297	Sclerolobium sp,	FABAC	34,70	0,133
298	Lacmelea aculeata	APOCY	11,00	0,236
298	Apeiba ecchinata	TILIA	32,30	0,020
	*	LECYTH		
300	Lecythis idatimon		23,30	0,852
301	Indeterminada	SAPOT	43,00	0,153
302	Symphonia globulifera	GUTT	31,80	0,905
303	Minquartia guianensis	OLAEO	52,50	0,243
304	Protium decandrum	BURSE	27,80	-0,111
305	Lecythis idatimon	LECYTH	35,10	0,391
306	Connarus erianthus	CONNAC	12,00	0,841
307	Lecythis idatimon	LECYTH	12,90	0,524
308	Lauraceae Indet,	LAURA	41,60	0,000
309	Protium trifoliolatum	BURSE	17,30	0,095
310	Lecythis idatimon	LECYTH	21,80	0,545
311	Lecythis idatimon	LECYTH	10,20	1,412
312	Pouteria sp,	SAPOT	11,60	0,063

313	Eschweilera sp,	LECYTH	17,30	0,217
314	Inga sp,	FABAC	24,00	0,000
315	Virola michelli	MYRIST	39,30	0,106
316	Maquira sclerophilla	MORAC	10,90	0,196
317	Theobroma speciosum	STERC	14,70	0,063
318	Manikara bidentata	SAPOT	15,00	0,132
319	Licania heteromorpha	CHRYSO	24,90	0,000
320	Vouacapoua americana	CAESA	41,50	0,428
321	Lecythis idatimon	LECYTH	18,80	-0,026
322	Neea sp,	NYCTA	26,90	0,286
323	Tetragastris panamenesis	BURSE	13,20	0,000
324	Eschweilera coriacea	LECYTH	12,20	0,069
325	Eschweilera coriacea	LECYTH	45,80	0,407
326	Lauraceae Indet,	LAURA	10,90	0,132
327	Manikara bidentata	SAPOT	21,40	0,270
328	Guarea cf,	MELI	11,00	0,005
329	Eschweilera sp,	LECYTH	10,10	0,074
330	Lecythis idatimon	LECYTH	29,20	0,000
331	Jacaranda copaia	BIGNO	34,70	0,095
332	Licania membranacea	CHRYSO	10,30	0,074
333	Lecythis idatimon	LECYTH	18,90	-0,148
334	Lauraceae Indet,	LAURA	32,20	0,000
335	Rinorea riania	VIOLAC	10,20	0,661
336	Protium decandrum	BURSE	23,60	2,693
337		SAPOT		
	Pouteria guianensis		10,00	1,116
338	Oenocarpus distichus	ARECA	14,80	0,492
339	Vouacapoua americana	CAESA	60,70	0,106
340	Mirciaria tenella	MYRTA	23,90	-0,063
341	Lecythis idatimon	LECYTH	55,00	0,217
342	Guatteria poepigiana	ANNO	12,30	0,085
343	Licania sp,	CHRYSO	12,30	-0,079
344	Lecythis idatimon	LECYTH	12,20	1,106
345	Lecythis idatimon	LECYTH	16,60	0,185
346	Vouacapoua americana	CAESA	27,00	0,000
347	Lecythis idatimon	LECYTH	38,10	1,243
348	Ocotea sp,	LAURA	40,80	-0,063
349	Stryphnodendron guianense	FABAC	12,60	-0,074
350	Eschweilera sp,	LECYTH	12,20	0,122
351	Vouacapoua americana	FABAC	13,70	0,132
352	Pouteria sp,	SAPOT	28,50	0,000
353	Indeterminada	LEG	16,50	0,212
354	Lecythis idatimon	LECYTH	26,60	0,344
355	Eugenia cf, flavecens	MYRTA	28,40	0,122
356	Theobroma speciosum	STERC	10,00	0,000
357	Pouteria sp,	SAPOT	13,60	0,164
358	Rinorea sp,	VIOLAC	12,10	0,000
359	Brossimum guianense	MORAC	12,10	-0,063
360	Eschweilera coriacea	LECYTH	25,10	0,000
361	Vouacapoua americana	FABAC	24,00	-0,042
362	Brossimum guianense	MORAC	50,90	-0,005
363	Indeterminada	INDET	17,50	0,026
364	Indeterminada	INDET	17,50	0,058
365	Rinorea riana	VIOLAC	10,70	0,143
555	201001100100	102110	10,70	0,113

366	Tovomita sp,	CLUSI	12,80	0,466
367	Licaria sp,	LAURA	13,20	0,000
368	Montabea sp,	POLYGA	46,20	0,307
369	Licania sp,	CHRYSO	20,00	0,058
370	Ilex sp,	AQUIF	13,10	0,746
371	Pouteria jariensis	SAPOT	17,40	0,000
372	Virola michelli	MYRIST	14,50	0,101
373	Pseudolmedia suaveleons	MORAC	10,40	0,629
374	Rinorea riana	VIOLAC	18,50	0,000
375	Protium robustum	BURSE	21,50	0,000
376	Ocotea sp,	LAURA	10,20	0,000
377	Rinorea riana	VIOLAC	12,20	-0,032
378	Amajoua guianensis	RUBIA	57,70	-0,032
379	Manilkara sp,	SAPOT	30,80	0,053
380	Tetragastris panamensis	BURSE	30,00	0,058
381	Rinorea sp,	VIOLAC	11,20	0,439
382	Rinorea sp,	VIOLAC	10,40	0,000
383	Rinorea sp,	VIOLAC	11,20	0,000
384	Guatteria sp,	ANNO	17,70	-0,085
385	Protium trifoliolatum	BURSE	45,20	0,000
386	Licania egleri	CHRYSO	20,40	0,053
387	Pouteria sp,	SAPOT	24,30	0,053
388	Licania membranacea	CHRYSO	14,20	0,026
389	Poecilanthe effusa	FABAC	12,90	0,169
390	Swartzia sp,	FABAC	25,30	0,090
391	Eschweilera grandiflora	LECYTH	10,10	-0,085
392	Inga brachyrheris	FABAC	10,80	-0,016
393	Eschweilera pedicellata	LECYTH	19,50	0,000
394	Mouriri sp,	MELAST	26,10	0,159
395	Mezilaurus duckei	LAURA	11,40	0,000
396	Pouteria oppositifolia	SAPOT	17,50	0,185
397	Duquetia echinophora	ANNO	31,50	0,000
398	Virola michelli	MYRIST	11,90	0,238
399	Licania membranacea	CHRYSO	13,40	-0,026
400	Manikara huberi	SAPOT	29,00	-0,053

ANEXO II

Matriz de probabilidades de transição no período (2004-2006) na TPA.

				Classes	diamét	ricas (CD) pa	ara o a	no de 2	006			
CD para (2004)	R	ı	10<15	15<20	20<25	25<30	30<35	35<40	40<45	45<50	≥50	M	Total geral
R			0,747	0,145	0,023							0,085	1,000
!					0,284	0,295	0,102	0,019	0,056	0,028	0,083	0,133	1,000
10<15			0,592	0,199	0,045	0,003	0,000					0,074	0,913
15<20				0,677	0,204	0,024	0,002					0,051	0,958
20<25					0,466	0,236	0,046	0,004				0,122	0,873
25<30						0,444	0,183	0,035				0,156	0,818
30<35							0,290	0,278				0,201	0,769
35<40								0,444				0,222	0,667
40<45									0,444	0,389	0,167		1,000
45<50										0,250	0,750		1,000
≥50											1,000		1,000
Р					0,284	0,295	0,102	0,019	0,056	0,028	0,083	0,133	1,000
М													
Total geral			1,339	1,021	1,022	1,002	0,623	0,780	0,500	0,667	2,000	1,045	11

Matriz de probabilidades de transição no período (2004-2006) na LA.

Classes diamétricas (CD) para o ano de 2006													
CD para (2004)	R	ı	10<15	15<20	20<25	25<30	30<35	35<40	40<45	45<50	≥50	М	Total geral
R			0,928	0,039								0,033	1,00
10<15			0,861	0,073	0,001							0,032	0,97
15<20				0,869	0,061	0,004						0,032	0,97
20<25					0,766	0,212	0,015	0,004				0,004	1,00
25<30						0,678	0,205	0,055	0,006			0,026	0,97
30<35							0,852	0,070	0,069			0,008	1,00
35<40								0,810	0,087			0,053	0,95
40<45									0,694			0,139	0,83
45<50										0,766		0,109	0,88
≥50											0,810	0,090	0,90
Р			0,103	0,039	0,001			0,033	0,187	0,065	0,467	0,105	1,00
М													0
Total geral	-	-	1,89	1,02	0,83	0,89	1,07	0,97	1,04	0,83	1,28	0,63	10