EDIÉLMA DO ROCIO CHIPANSKI

PROPOSIÇÃO PARA MELHORIA DO DESEMPENHO AMBIENTAL DA INDÚSTRIA DE AGLOMERADO NO BRASIL

Dissertação apresentada ao Curso de Pós-Graduação em Engenharia Florestal, do Setor de Ciências Agrárias da Universidade Federal do Paraná, como requisito parcial à obtenção do Título de Mestre em Ciências Florestais, área de concentração de Tecnologia e Utilização de Produtos Florestais.

Orientador: Prof^{ϱ} Dr Dimas $\mathsf{Agostinho}$ da Silva

APROVAÇÃO

AGRADECIMENTOS

Agradeço a Deus pela oportunidade da vida e a meus pais pelo amor.

À Universidade Federal do Paraná pela oportunidade de acesso gratuito a um curso de tão elevado nível.

Ao Professor Dr. Dimas por seus ensinamentos, orientação valiosa, paciência e flexibilidade.

Ao Professor Dr. Ivan pela excelente revisão e análise crítica da dissertação.

A todos os professores do curso pela contribuição em cada área específica: Graciela, Umberto, Sidon, Nivaldo, Gislaine, Setsuo, Sebastião, Yoshiko.

A todas as empresas fabricantes de aglomerado no Brasil, sem as quais este trabalho não seria possível – Berneck, Bonet, Duratex, Eucatex, Placas do Paraná, Satipel, Tafisa, pela receptividade e confiança, em especial aos colegas Lenoir da Silveira, Paulo Ponczcovski, Dimas Agostinho da Silva Filho, Francisco Guimarães, José Antonio Bernardo, João Vianei, Marcelo Eburneo, Fernada dall Farra, Jaime Piekas, Sedeur Maurício, Eurico Silva, Gustavo Maggi.

À ABIPA – Associação Brasileira da Indústrias de Painéis de Madeira, em especial à sra. Rozane pela prontidão das informações.

Aos colegas de trabalho Sérgio Vanalli e Valter Lessmann pelas valiosas contribuições bibliográficas.

À amiga e chefe da Biblioteca do Setor de Ciência e Tecnologia da UFPR-Eliane, pelo incentivo e disponibilidade.

BIOGRAFIA DO AUTOR

Ediélma do Rocio Chipanski, filha de Edy Chemin e Elmo Chipanski, nasceu na cidade de Campo Largo, estado do Paraná.

Graduou-se em Engenharia Química pela Universidade Federal do Paraná – UFPr.

Iniciou sua vida profissional na empresa Placas do Paraná. Como Gerente do Departamento de Pesquisa e Desenvolvimento, atuou nas áreas química, florestal, de painéis e de móveis desta empresa, coordenando trabalhos de implantação de produtos e processos, sistema da qualidade e meio ambiente.

Durante dois anos atuou como consultora de empresas, como auditora pela Fundação Carlos Alberto Vanzolini - USP e como professora da Sociedade Educacional de Santa Catarina. De 2003 a 2004 foi professora substituta do curso de Engenharia Ambiental da Universidade Federal do Paraná.

Em 2004 foi contratada pela empresa Hexion Química como Gerente de Desenvolvimento e Serviços Técnicos, onde atua até a presente data.

Durante a vida profissional realizou vários cursos de especialização e aperfeiçoamento.

Em 1989 concluiu o curso de pós-graduação na área de Administração, com ênfase em Engenharia Econômica, na Faculdade de Administração e Economia.

Em 2001 concluiu o curso de pós-graduação Latu Sensu MBA Executivo Team Management na Fundação Getúlio Vargas – FGV.

Realizou diversos cursos de especialização em qualidade e meio ambiente, e em 1996 obteve a certificação Lead Assessor para auditoria do sistema da qualidade pelo Instituto Neville Clarke e em 1998, pelo mesmo instituto, obteve a certificação Lead Assessor para auditoria de sistema ambiental.

Em 2001 obteve a certificação de qualificação em radioproteção industrial pela Comissão Nacional de Energia Nuclear.

Em 2004 iniciou o curso de pós-graduação em Engenharia Florestal, visando a obtenção do Título de Mestre em Ciências Florestais, área de concentração de Tecnologia e Utilização de Produtos Florestais, sob a orientação do Professor Dr. Dimas Agostinho da Silva.

SUMÁRIO

LISTA I	DE FIGURAS	viii
LISTA I	DE QUADROS	Х
LISTA I	DE TABELAS	xi
LISTA I	DE ABREVIATURAS E SIGLAS	xii
RESUM	10	χV
ABSTR	ACT	xvi
1	INTRODUÇÃO	1
1.1	OBJETIVOS	3
2	REVISÃO DA LITERATURA	4
2.1	A INDÚSTRIA DE PAINÉIS DE AGLOMERADO	4
2.1.1	Desenvolvimento da Indústria de Aglomerado no Mundo	4
2.1.2	Desenvolvimento da Indústria de Aglomerado no Brasil	9
2.1.3	Processo de Fabricação de Aglomerado	11
2.2	A INDÚSTRIA DE AGLOMERADO E O MEIO AMBIENTE	13
2.2.1	Desenvolvimento Sustentável	13
2.2.2	Aspectos e Impactos Ambientais	15
2.2.3	Gerenciamento e Soluções Aplicáveis para Minimização dos Impactos Ambientais	16
2.2.4	Indicadores de Desempenho Ambiental	18
2.2.5	Certificação Ambiental	22
2.2.5.1	Certificação conforme norma ISO 14000	23
2.2.5.2	Certificação conforme FSC	25
2.2.5.3	Certificação conforme CERFLOR	27
2.2.6	Legislação Ambiental Brasileira	28
2.3	ASPECTOS E IMPACTOS AMBIENTAIS DA INDÚSTRIA DE AGLOMERADO	29
2.3.1	Utilização da Matéria-Prima: Madeira	29
2.3.1.1	Impactos ambientais	29
2.3.1.2	Alternativas e soluções tecnológicas mitigadoras	30
2.3.2	Utilização de Matéria-Prima: Resinas Sintéticas	39
2.3.2.1	Impactos ambientais	39
2.3.2.2	Alternativas e soluções tecnológicas mitigadoras	41
2.3.3	Geração de Resíduos Sólidos	44
2.3.3.1	Impactos ambientais	45

2.3.3.2	Alternativas e soluções tecnológicas mitigadoras	46
2.3.4	Emissão de Formol	51
2.3.4.1	Impactos ambientais	51
2.3.4.2	Alternativas e soluções tecnológicas mitigadoras	54
2.3.5	Uso de Combustíveis e Emissões Atmosféricas	57
2.3.5.1	Impactos ambientais	58
2.3.5.2	Alternativas e soluções tecnológicas mitigadoras	65
2.3.5.3	Tecnologias atuais disponíveis	84
2.3.6	Emissão de VOCs (Compostos Orgânicos Voláteis)	87
2.3.6.1	Impactos ambientais	89
2.3.6.2	Alternativas e soluções tecnológicas	89
2.3.7	Emissão de Efluentes Líquidos	96
2.3.7.1	Impactos ambientais	96
2.3.7.2	Alternativas e soluções para tratamento de efluentes líquidos	97
3	MATERIAL E MÉTODOS	100
3.1	MATERIAL	100
3.2	MÉTODOS	100
3.2.1	Seleção das Indústrias	100
3.2.2	Levantamento de Dados nas Indústrias Amostradas	101
3.2.3	Levantamento dos Aspectos e Impactos Ambientais nas Indústrias de Aglomerado	102
3.2.4	Levantamento da Legislação Ambiental Aplicável	105
3.2.5	Verificação das Soluções Ambientais Adotadas pelas Indústrias de Aglomerado	105
3.2.6	Soluções Tecnológicas Aplicáveis a Indústrias de Aglomerado	105
4	RESULTADOS E DISCUSSÕES	106
4.1	CAPACIDADE PRODUTIVA BRASILEIRA	106
4.2	UTILIZAÇÃO DE MATÉRIA-PRIMA: MADEIRA	107
4.2.1	Gêneros Utilizados	107
4.2.2	Composição da Matéria-Prima (Madeira)	109
4.3	RESINAS SINTÉTICAS E LIBERAÇÃO DE FORMOL	112
4.3.1	Utilização de Resinas Sintéticas	112
4.3.2	Liberação de Formol no Ambiente	113
4.3.3	Liberação de Formol pelo Aglomerado	115
4.4	GERAÇÃO DE RESÍDUOS SÓLIDOS	117

4.4.1	Resíduos Sólidos de Madeira	117
4.4.2	Resíduos de Borra de Cola	121
4.5	EMISSÕES ATMOSFÉRICAS	122
4.5.1	Uso de Combustíveis	122
4.5.2	Liberação dos Gases de Combustão	124
4.5.3	Emissão de VOCs- Compostos Orgânicos Voláteis	125
4.6	EFLUENTES LÍQUIDOS	126
4.7	CERTIFICAÇÃO AMBIENTAL, INDICADORES DE DESEMPENHO E LEGISLAÇÃO AMBIENTAL APLICÁVEL	127
4.7.1	Certificação Ambiental	127
4.7.2	Indicadores de Desempenho Ambiental	129
4.7.3	Legislação Ambiental Aplicável	130
5	CONCLUSÕES E RECOMENDAÇÕES	134
5.1	CONCLUSÕES	134
5.2	RECOMENDAÇÕES	139
	REFERÊNCIAS	141
	ANEXOS	155
1	RESUMO DA LEGISLAÇÃO AMBIENTAL BRASILEIRA (FEDERAL E ESTADUAIS) QUE SE APLICA À INDÚSTRIA DE AGLOMERADO DO BRASIL	156
2	FORMULÁRIO PARA A COLETA DE DADOS DENTRO DAS INDÚSTRIAS SELECIONADAS	186

LISTA DE FIGURAS

FIGURA 1 -	PRODUÇÃO MUNDIAL DE AGLOMERADO EM 2004	8
FIGURA 2 -	DISTRIBUIÇÃO DE CONSUMO DE AGLOMERADO NO BRASIL	11
FIGURA 3 -	FLUXOGRAMA DO PROCESSO DE FABRICAÇÃO DE AGLOMERADO	12
FIGURA 4 -	ÁREAS DE FLORESTAS DE PINUS E EUCALIPTO DO BRASIL – POR ESTADO	31
FIGURA 5 -	ESQUEMA PARA FABRICAÇÃO DE RESINAS FENÓLICAS E URÉICAS	40
FIGURA 6 -	UTILIZAÇÃO DOS RESÍDUOS EM PLANTA TÍPICA NORTE AMERICANA	50
FIGURA 7 -	NÍVEIS MÉDIOS DE EMISSÃO DE FORMALDEÍDO POR ANO DE PRODUÇÃO DE AGLOMERADO, DETERMINADOS PELO TESTE DA CÂMARA (GRANDE ESCALA)	55
FIGURA 8 -	CÂMARA DE SEDIMENTAÇÃO GRAVITACIONAL	73
FIGURA 9 -	DESENHO ESQUEMÁTICO DE UM PRECIPITADOR ELETROSTÁTICO	74
FIGURA 10 -	CICLONE	75
FIGURA 11 -	MULTI CICLONE	76
FIGURA 12 -	LAVADOR DE GÁS OU SCRUBBER	77
FIGURA 13 -	FILTRO DE MANGAS COM MECANISMO DE SACUDIMENTO PARA LIMPEZA	78
FIGURA 14 -	PRINCÍPIO DO PROCESSO DE SECAGEM EM CIRCUITO FECHADO	84
FIGURA 15 -	SECADOR DE ÚNICO PASSO COM CONJUNTO DE MULTI CICLONE	85
FIGURA 16 -	SECADOR DE TRIPLO PASSO	86
FIGURA 17 -	SISTEMA DE BIOFILTRAÇÃO	93
FIGURA 18 -	LOCALIZAÇÃO DAS EMPRESAS FABRICANTES DE AGLOMERADO NO BRASIL	101
FIGURA 19 -	CAPACIDADE PRODUTIVA PERCENTUAL DE AGLOMERADO POR ESTADO NO BRASIL	107
FIGURA 20 -	GÊNEROS DE MADEIRA UTILIZADA PARA FABRICAÇÃO DE AGLOMERADO NO BRASIL	108
FIGURA 21 -	GÊNEROS DE MADEIRA UTILIZADA PARA FABRICAÇÃO DE AGLOMERADO POR ESTADO NO BRASIL	109
	CONSTITUIÇÃO MÉDIA DA MATÉRIA-PRIMA (BASE SECA) PARA FABRICAÇÃO DE AGLOMERADO NO BRASIL	110
FIGURA 23 -	CONSUMO MENSAL TOTAL DE MADEIRA (BASE SECA) PARA A	110

	PRODUÇAO DE AGLOMERADO NO BRASIL	
FIGURA 24 -	CONSUMO MENSAL TOTAL DE RESINAS, COM 65% DE SÓLIDOS, EM FUNÇÃO DA RELAÇÃO MOLAR	114
FIGURA 25 -	TIPOS DE RESINAS URÉIA FORMOL UTILIZADAS EM FUNÇÃO DA RELAÇÃO MOLAR	114
FIGURA 26 -	PERCENTUAL DE TIPOS DE CHAPAS DE AGLOMERADO PRODUZIDAS NO BRASIL CONFORME A CLASSE DE EMISSÃO DE FORMOL	116
FIGURA 27 -	QUANTIDADE MENSAL DE RESÍDUOS DE MADEIRA GERADOS PELAS INDÚSTRIAS DE AGLOMERADO NO BRASIL	118
FIGURA 28 -	PERCENTUAL DE RESÍDUOS DE MADEIRA GERADOS PELAS INDÚSTRIAS DE AGLOMERADO NO BRASIL	119
FIGURA 29 -	DESTINO DADO AOS RESÍDUOS DE MADEIRA GERADOS MENSALMENTE PELAS INDÚSTRAIS DE AGLOMERADO NO BRASIL	120
FIGURA 30 -	DESTINO DADO PELOS FABRICANTES DE AGLOMERADO NO BRASIL À BORRA DE COLA GERADA NO PROCESSO	122
FIGURA 31 -	COMBUSTÍVEIS UTILIZADOS PELAS EMPRESAS FABRICANTES DE AGLOMERADO NO BRASIL	123
FIGURA 32 -	DISPOSIÇÃO DOS EFLUENTES DAS EMPRESAS FABRICANTES DE AGLOMERADO NO BRASIL	127
FIGURA 33 -	CERTIFICAÇÃO DAS EMPRESAS FABRICANTES DE AGLOMERADO NO BRASIL	128

LISTA DE QUADROS

QUADRO 1 -	TIPOS DE ABORDAGENS PARA SELEÇÃO DOS INDICADORES DE DESEMPENHO AMBIENTAL BASEADOS NA ISO 14031	
QUADRO 2 -	RENDIMENTOS OBTIDOS APÓS BENEFICIAMENTO	44
QUADRO 3 -	MATRIZ DE ASPECTOS E IMPACTOS AMBIENTAIS	104
QUADRO 4 -	INDICADORES DE DESEMPENHO AMBIENTAL DAS INDÚSTRIAS DE AGLOMERADO NO BRASIL	129
QUADRO 5 -	LEGISLAÇÃO AMBIENTAL APLICÁVEL ÀS INDÚSTRIAS DE AGLOMERADO	
QUADRO 6 -	PADRÕES DE EMISSÃO DE POLUENTES ATMOSFÉRICOS	173

LISTA DE TABELAS

TABELA 1 -	EMPRESAS PRODUTORAS DE AGLOMERADO NO BRASIL - 2005.	9
TABELA 2 -	PRODUÇÃO, CONSUMO, EXPORTAÇÃO E IMPORTAÇÃO DE AGLOMERADO NO BRASIL	10
TABELA 3 -	EXEMPLO PARA DETERMINAÇÃO DE ASPECTO E IMPACTO AMBIENTAL	16
TABELA 4 -	GERAÇÃO DE RESÍDUOS EM PLANTA DE CHAPAS DE COMPOSIÇÃO	49
TABELA 5 -	EFEITOS FISIOLÓGICOS CAUSADOS PELO MONÓXIDO DE CARBONO	60
TABELA 6 -	COMPARAÇÕES ENTRE AS EMISSÕES AO SE CONSIDERAR O USO ALTERNATIVO DE ALGUNS COMBUSTÍVEIS RELATIVAMENTE AO USO DE ÓLEO BTE	70
TABELA 7 -	EXPRESSOS EM g/10 ⁶ Kcal (OBTIDOS A PARTIR DO CÁLCULO	71
TABELA 8 -	EQUIPAMENTOS DE CONTROLE DE POLUIÇÃO (ECP)	80
TABELA 9 -	VANTAGENS E DESVANTAGENS DO SISTEMA DE ADSORSÃO	92
TABELA 10 -	VALORES COMPARATIVOS DE REDUÇÃO DAS IMPUREZAS DO EFLUENTE CONFORME O TIPO DE TRATAMENTO	99
TABELA 11 -	CAPACIDADE PRODUTIVA DAS EMPRESAS FABRICANTES DE AGLOMERADO NO BRASIL	106
TABELA 12 -	GÊNEROS PRINCIPAIS DE MADEIRA UTILIZADA PELAS EMPRESAS FABRICANTES DE AGLOMERADO NO BRASIL	108

LISTA DE ABREVIATURAS E SIGLAS

ABIMCI - Associação Brasileira da Indústria de Madeira Processada

Mecanicamente

ABIPA - Associação Brasileira da Indústria de Painéis de Madeira

ABNT - Associação Brasileira de Normas Técnicas ANSI - American National Standards Institute APAs - Áreas de Preservação Ambiental

AsH₃ - Hidreto de arsênio

ASTM - American Society for Testing and Materials

atm - atmosfera

BPF - Baixo Ponto Fulgor BTE - Baixo Teor de Enxofre °C - Grau centígrado CaCO₃ - Carbonato de cálcio

CERFLOR - Programa Brasileiro de Certificação Florestal

CETESB - Companhia de Tecnologia de Saneamento Ambiental

CFCs - Clorofluorcarbono
CNCl - Cloreto de cianeto
COCl₂ - Dicloreto de carbolina

CONAMA - Conselho Nacional do Meio Ambiente

COPAM - Comissão de Política Ambiental
CPA - Composite Panel Association
DBO5 - Demanda Bioquímica de Oxigênio
DQO - Demanda Química de Oxigênio

DIN - Deutsches Institut fur NormungEIA - Estudo de impacto ambientalEUA - Estados Unidos da América

FAO - Organização das Nações unidas para a Alimentação e Agricultura

FGR - Recirculação dos gases de exaustão

FSC - Forest Stewardship Council - Conselho de Manejo Florestal

GEE - Gases do Efeito Estufa GLP - Gás Liquefeito do Petróleo

g/h - grama por hora

GC/MS - gas chromatography/mass spectometry

h - hora

HBr - Ácido bromídrico HCl - Ácido clorídrico

HDF - High Density Fiberboard

HF - Acido fluorídrico
 HFC - Hidrofluorcarbono
 H₂S - Sulfeto de hidrogênio

HUD - Department of Housing and Urban Development

IAP - Instituto Ambiental do Paraná

IDA - Indicador de Desempenho Ambiental
 IDG - Indicador de Desempenho Gerencial
 IDO - Indicador de Desempenho Organizacional

INCA - Instituto Nacional do Câncer

INMETRO - Instituto Nacional de Metrologia, Normalização e Qualidade

ISO - Organização Internacional para a Normalização

kg - quilograma

kg/h - quilograma por hora Ll - Licença de instalação LO - Licença de operação

LP - Licença prévia m³ - metro cúbico

MDF - Medium Density Fiber Board

MDI - Metileno Di Isocianato

MDL - Mecanismo de Desenvolvimento Limpo

MG - Minas Gerais

MP - Material particulado mg/l - Miligrama por litro

mg/Nm³ - miligrama por normal metro cúbico

ml/l - mililitro por litro

MOE - Módulo de Elasticidade MOR - Módulo de Ruptura MP - Material Particulado

MW - Megawatt

NAS - National Academy of SciencesNMP/ml - Número mais provável por mililitro

NBR - Norma Brasileira

NO - Monóxido de nitrogênio NO₂ - Dióxido de nitrogênio OSB - Oriented Strand Board

OSHA - Associação de Saúde e Segurança Ocupacional

PAH - Polynuclear hydrocarbons

PCDDs - Policlorineted benzeno para dioxins

PCDFs - Polyciclic dibenzeno furano PCS - Poder Calorífero Superior

PE - Padrão de emissão PFC - Perfluorcarbono

PMDI - metileno bis (fenil isocianato) polimérico

ppm - parte por milhão

PR - Paraná

Psia - Pressão absoluta
Q - Taxa de carregamento
RGS - Rio Grande do Sul

RIMA - Relatório de impacto ambiental RTO - Regenerative Thermal Oxidizer

RM - Relação Molar

SAGE - Strategic Advisory Group

SC - Santa Catarina

SCR - Redução seletiva catalítica
 SEMA - Secretaria do Meio Ambiente
 SNCR - Redução seletiva não-catalítica

SO₂ - Dióxido de Enxofre SO₃ - trióxido de enxofre

SP - São Paulo

SVOCs - Semi Volatile Organic Compounds

- microgramas μg UNCED

- Conferência Nacional das Nações Unidas sobre Meio Ambiente e

Desenvolvimento

Volatile Organic CompoundsWilhelm Klauditz Institut VOCs WKI $\mu g/m^3$

- micrograma por metro cúbico

RESUMO

O presente trabalho tem como objetivo principal propor melhorias para o desempenho ambiental das indústrias de painéis de madeira aglomerada no Brasil. Para tanto foi proposta uma metodologia baseada em questionários, entrevistas e visitas técnicas com o propósito de verificar o processo produtivo, caracterizar os aspectos e impactos ambientais, bem como as soluções adotadas pelas empresas com respeito a suas questões ambientais. Pesquisaram-se também as tecnologias disponíveis que poderiam minimizar os impactos ambientais e avaliou-se a aplicação da legislação ambiental brasileira pertinente. A coleta de dados foi feita em todos os oito fabricantes de aglomerado no Brasil. Os resultados diagnosticaram que há uma grande preocupação com a questão ambiental e se constatam: uma prática adequada de gerenciamento de resíduos principalmente dos resíduos sólidos de madeira, uma diversificação da matriz energética com participação da biomassa, a busca por alternativas para substituição da matéria-prima principal - madeira de florestas plantadas - por resíduos de terceiros. As questões ambientais que merecem atenção dizem respeito ao uso de madeira de floresta plantada (matériaprima escassa e valorizada), ao uso de combustíveis derivados de petróleo, encontrado ainda de forma significativa, a falta de tratamento adequado dos VOCs e o nível de emissão de formol dos painéis, comparativamente mais altos que nos mercados internacionais (europeus e americano).

Palavras-Chave: Meio ambiente; Desempenho ambiental; Painéis de madeira aglomerada; Indústria de Madeira.

ABSTRACT

The main purpose of this research is to contribute with the environmental performance of the Brazilian particleboard industry. The methodology was based on questionnaires, interviews and technical visits to verify the process, identify the environmental aspects and impacts, as well as, the solutions adopted by the industries. The technologies to minimize the environmental impacts were identified and the applicability of Brazilian environmental legislation was evaluated. The data collection was made in all the eight particleboard production facilities. The results of the research showed that the companies are very concerned about the environment and following arguments support this: suitable solid waste management specially in terms of wood waste, diversified energy matrix including biomass, alternative raw materials, including wood waste from suppliers. The environmental aspects which require attention are: the dependence on the wood (valuable and scarce), the use of fuel oil, suitable treatment process for VOCs, and higher formaldehyde emission from panels compared to European and American products.

Key words: Environment; Environmental performance; Particleboard Industry.