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“Come to the edge.  

We might fall.  

Come to the edge.  

It's too high!  

COME TO THE EDGE! 

And they came,  

And he pushed,  

And they flew“ 

Christopher Logue 

 

 

“As botas apertadas são uma das maiores venturas da terra, porque, fazendo doer 

os pés, dão azo ao prazer de as descalçar”  

Machado de Assis 
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CAMARGOS, Carla Cristina de Souza, M. Sc., Universidade Federal de Viçosa, 
março de 2013. Desempenho de um algoritmo de otimização hierárquico 
multiobjetivo aplicado a um modelo de superfície terrestre e ecossistemas. 
Orientador: Marcos Heil Costa.  

O desempenho de um LSEM (Modelo de superfície terrestre e ecossistema) depende 

dos parâmetros das equações que representam os processos simulados. Contudo, a 

mensuração de alguns destes parâmetros pode ser impraticável ou até mesmo 

impossível; por isso, necessitam ser estimados ou, preferencialmente, otimizados 

para cada ecossistema. Quando os parâmetros são calibrados para uma única variável 

(problema mono-objetivo) eles podem não representar bem a realidade, dado a 

complexidade do modelo e sua dependência de diversas variáveis (problema 

multiobjetivo). Por isso, há a necessidade de uma otimização simultânea 

multiobjetiva. Porém, o desempenho da otimização diminui com o aumento do 

número de variáveis otimizadas simultaneamente e, além disso, o estudo da 

otimização simultânea de mais de três objetivos é uma área relativamente nova e não 

suficientemente estudada. Para a otimização simultânea de um grande número de 

variáveis, existe uma metodologia na qual se utiliza conceitos de teoria hierárquica 

de sistemas em que a otimização ocorre dos processos mais rápidos (fluxos 

radiativos) para os mais lentos (alocação de carbono). Este trabalho avalia o 

desempenho da otimização hierárquica do modelo, utilizando o índice D (a média 

das razões individuais entre as saídas das otimizações multiobjetiva e mono-

objetiva). Entender como o índice de desempenho D do algoritmo de otimização 

hierárquico varia em relação ao número de funções objetivo otimizadas é de extrema 

importância para o desenvolvimento desta área de pesquisa. Para fazer atingir os 

objetivos, foram necessárias duas etapas. Primeiramente, foi feita uma análise de 

sensibilidade, a fim de conhecer a sensibilidade das variáveis de saída aos parâmetros 

do modelo. Depois, foram feitas simulações com todas as combinações possíveis 

entre as sete variáveis micrometeorológicas disponíveis (PARo, fAPAR, Rn, u*, H, 

LE, NEE) levando em consideração a hierarquia dos processos. Os resultados 

encontrados indicam que, para até três funções objetivo, a otimização multiobjetiva 

hierárquica pode gerar resultados melhores do que a otimização multiobjetiva 

tradicional (um único nível hierárquico), desde que a distribuição dos parâmetros 

entre as variáveis seja feita de forma coerente com a análise de sensibilidade. Outro 

resultado importante revela que para um mesmo número de saídas otimizadas, 
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quanto maior o número de níveis hierárquicos melhor o desempenho do modelo 

otimizado. Porém, o desempenho do modelo diminui rapidamente quando o número 

de funções objetivo aumenta, evidenciando que o poder da calibração hierárquica 

para o uso de um grande número de funções objetivo é altamente dependente de 

algumas restrições que o modelo possui e um alto desempenho do modelo para 

muitas funções objetivo será possível somente após a remoção delas.  
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ABSTRACT 

 

CAMARGOS, Carla Cristina de Souza, M. Sc., Universidade Federal de Viçosa, 

March, 2013. Performance of a hierarchical multi-objective optimization 

algorithm applied to a land surface and ecosystem model. Adviser: Marcos Heil 

Costa. 

 

The performance of LSEMs (Land surface and ecosystem models) depends on the 

parameters of the equations representing the simulated process. However, the 

measurement of some parameters can be impractical or even impossible; therefore, 

they need to be estimated, or preferably optimized specifically for each ecosystem. 

When the parameters are calibrated to a single variable (mono-objective problem) 

they may not represent the reality, because the complexity of the model and its 

dependence on several variables (multi-objective problem). Thus, simultaneous 

multi-objective optimizations are indispensable. However, the optimization 

performance decreases as the number of variables to be optimized simultaneously 

increases. Furthermore, the study of simultaneous optimization using more than three 

objectives is a new area and not yet sufficiently studied. For simultaneous 

optimization of a large number of variables, there is a method that uses concepts of 

hierarchical systems theory in which the optimization occurs from the fastest 

(radiative fluxes) to the slowest process (carbon allocation). This study evaluates the 

performance of the hierarchical optimization using the index D (the average of the 

ratios between the individual outputs of multi-objective optimization and mono-

objective). Understanding how the performance index D varies with respect to the 

number of objective functions optimized and to the number of hierarchical levels is 

important for the development of this research area. Two steps are necessary to 

achieve the study goals. First, a sensitivity analysis was performed to determine the 

output variables sensitivity to the model parameters. After, simulations were made 

using all possible combinations among the seven micrometeorological variables 

available (PARo, fAPAR, Rn, u *, H, LE, NEE) taking into account the hierarchy of 

processes. The results indicate that for up to three objective functions, hierarchical 

multi-objective optimization generates better results than the simultaneous multi-

objective optimization (one hierarchical level), provided that the parameters 

distribution among hierarchical levels is consistent with the sensitivity analysis. 



 
 

xviii 
 

Another important result shows that for the same number of outputs optimized, the 

greater the number of hierarchical levels the better the performance of the optimized 

model. However, the model performance falls quickly as the number of objective 

functions increases, evidencing that the power of hierarchy calibration that use a high 

number of objective functions is highly dependent on the removal of some 

constraints for model’s performance.  
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1. INTRODUCTION 

 

Land surface and ecosystem models (LSEM) mechanistically describe ecosystem 

function in terms of biogeophysical processes (such as fluxes of sensible and latent 

heat, momentum and radiation), biogeochemical processes (terrestrial carbon cycle 

and CO2 fluxes) and ecological processes (phenology and competition among plant 

functional types) at the biosphere-atmosphere interface. Land surface processes 

influence the climate system through their control of energy, water and carbon 

balances. Thus integrated LSEMs are important tools not only for biosphere-

atmosphere interactions at long-term scales such as paleoclimates and future 

climates, but also for short-term applications that depend on land surface fluxes, like 

climate prediction and weather forecast. 

In the past fifteen years, a better understanding of terrestrial ecosystem functioning 

and computational advances enabled the incorporation of new processes to the 

LSEMs, increasing model complexity. Each modeled process requires parameters, 

which define the performance of the model [Groenendijk et al., 2011]; however, 

some parameters may be impractical or impossible to measure [Mackay et al., 2003], 

and must be estimated or, preferably, specifically calibrated for each ecosystem. 
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Parameter calibration may be carried out using an optimization process that 

minimizes differences between predicted and observed data. Hence the increase in 

the number of calibrated parameters usually leads to a more reliable model. In 

addition to improving its performance, the calibration also allows for a detailed study 

of each of its components, so that the models can be improved according to necessity 

and resources [Pitman, 2003].  

The performance of models with multiple outputs such as LSEMs could be 

optimized through the use of all available observations, including data collected by 

multiple sensors in intensive field sites and regional observations by remote sensors 

(radar, aircraft, satellites, etc). However, this improvement can increase the 

complexity of the optimization problem. 

Each output variable simulated by the model (that has a corresponding observation) 

represents one objective of the optimization problem. There are two kinds of 

optimization: mono-objective and multi-objective. A mono-objective optimization 

has a unique solution to the problem, whereas in multi-objective problems, 

conflicting objectives are common, i.e., the optimized set of parameters for one 

objective function is not suitable for another. Thus a multi-objective problem may 

have a set of solutions instead of a unique solution to the problem. Hence there is a 

performance drop in simultaneous optimization methods with the increase of 

optimized objective functions in the same simulation [Deb et al., 2002; Veldhuizen 

and Lamont, 2000; Vrugt et al., 2003].  

The simultaneous optimization of two or three objectives has been widely 

investigated [Gupta and Sorooshian, 1998; Deb et al., 2002; Coello, 2006] resulting 

in a variety of very efficient algorithms. The simultaneous optimization of more than 

three objectives, however, is a relatively young field and has not been thoroughly 

studied yet [Praditwong and Yao, 2007; Schutze et al., 2011].  

Varejão-Jr. et al. [2012] developed a calibration methodology that allows for the 

calibration of all processes simulated by a LSEM. This methodology proposes a 

hierarchical approach, in which the processes simulated by the model are divided in 

groups (i.e., radiative fluxes, turbulent fluxes or carbon allocation) and then 

hierarchically calibrated according to the organization of the groups, beginning with 

fast processes (radiative fluxes), then  slow processes (mass fluxes) and finally the 
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slowest processes (carbon allocation). The concept is that a large number of objective 

functions can be optimized as long as (i) they are organized in hierarchical levels, 

which must contain no more than three objective functions of the same group to be 

simultaneously optimized; (ii) each model parameter is optimized only once (in one 

hierarchical level) during the optimization process. When the processes (objective 

functions) are separated in hierarchical levels, parameters that describe the processes 

should be distributed and optimized in only one hierarchical level. The selection of 

the parameters each process is most sensitive to is done through a sensitivity 

analysis. The hierarchical optimization technique was implemented in an algorithm 

(OPTIS), which was applied to the LSEM IBIS – Integrated Biosphere Simulator 

[Foley et al., 1996].  

Assuming the mono-objective calibration is the best possible calibration for each 

individual output, the performance of the model after the multi-objective calibration 

can be compared to the performance of the  mono-objective calibration of each 

independent variable by using a relative performance index (D) [Varejão-Jr. et al., 

2012]. The index D is defined as the average of the individual ratios between the 

objective function output of the mono-objective calibration and the objective 

function output of the multi-objective calibration. The multi-objective hierarchical 

calibration efficiency is proportional to the value of the index D. 

The way the performance of the optimization algorithm varies according to the 

number of optimized objective functions (n) is crucial to the optimization of LSEMs 

using intensive sites data. If the index D drops rapidly with number of objective 

functions then the optimization attempt may be useless, the LSEM calibration using 

all data collected at intensive sites is impossible and only the model validation is 

possible. 

The behavior of the performance index D is not well known in the literature. In the 

only test performed, Varejão-Jr. et al. [2012] obtained a small drop of index D 

associated to the increase of the number of objective functions, with the index D 

ranging from 0.925 (n = 2) to 0.801 (n = 9), representing a satisfactory result for the 

multi-objective calibration problem. However, neither slope and concavity of the 

curve D versus n nor the variation of these particularities according to the way the 

hierarchical levels are organized have been studied yet. This information is essential 
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for determining the feasibility of the multi-objective optimization of LSEMs, in order 

to aid the design of model-improvement oriented intensive experimental sites and 

define future steps in land-surface/ecosystem modeling. 

This study has two main objectives related to a better understanding of the 

advantages of the hierarchical calibration. First, compare the hierarchical calibration 

to the simultaneous technique. Second, evaluate the basic characteristics (slope and 

concavity) of the relationship between the index D and the number of objective 

functions. 
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2. LITERATURE REVIEW 

 

2.1 Sensitivity analysis 

Sensitivity Analysis (SA) is an essential tool in modeling that helps to understand the 

importance of each parameter on the model output. An optimization problem can be 

very complex when it involves many parameters and multiple objective functions. 

Through SA, it is possible to understand how the variability in the model output may 

be attributed to the variability in the input [Rosolem et al., 2012]; and thus eliminate 

non-influential parameters in the optimization of some outputs, reducing the 

dimensions of the parameters space (screening method). Therefore, the search 

process becomes easier and the optimization results are improved. 

A special case of screening sensitivity analysis is the Morris method (1991) for 

global sensitivity analysis, which is a one-step-at-a-time method (OAT), i.e., only 

one input factor is changed in each run and all other factors are kept fixed to their 

baseline value. The Morris method provides qualitative sensitivity analysis results, 

which, in addition to identifying non-influential parameters, enables the ranking of 
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the parameters in order of importance. However, such method does not quantify 

exactly the relative importance of each one. 

Morris (1991) proposed the use of two different measures: one (µ) to estimate the 

mean effect of the model output parameters and another (σ) to estimate second and 

higher order effects (nonlinear effects and interactions). In order to avoid erroneous 

interpretations in non-monotonic models, Saltelli et al. (2005) proposed the use of 

the absolute value of the first measure proposed by Morris (|µ| = µ*). 

The sensitivity results are never unique, because the SA algorithm uses a random 

value to begin the test. Furthermore, in nonlinear models, OAT could fail to account 

for the interactions among different input factors [Czitrom, 1999]. Thus multiple 

analyses are necessary to confirm the results, as described in Section 3.5. 

 

2.2 Model evaluation 

The model evaluation makes use of an objective function to yield numerical values 

which quantify how the predicted values fit the observed data. The choice of the 

adjustment metrics between prediction and observation for model calibration is even 

more important than the selection of the optimization method itself [Trudinger et al., 

2007]. Several studies discuss the choice of adjustment metrics to evaluate accuracy 

and effectiveness of models [Fox, 1980; Willmott, 1981, 1982; Willmott et al., 1985; 

Legates and McCabe Jr., 1999; Willmott and Matsuura, 2005]. 

Mean error measures such as the mean square error (MSE), root mean square error 

(RMSE), mean absolute error (MAE) and mean bias error (MBE), provide 

appropriate and comprehensive information about how the model fits the observed 

data. Among these measures, RMSE and MAE are notably interesting because they 

exhibit the model error in the same unit of the simulated variable. Willmott [1982] 

recommended that the evaluation model procedure uses at least one of these two 

metrics, but later Willmott and Matsuura [2005] recommended using MAE rather 

than RMSE, because the former provides an easier interpretation, as it only 

represents the mean error, without the ambiguity involved in the calculation of the 

RMSE. 
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2.3 Multi-objective optimization 

The multi-objective optimization deals with solving problems that have many 

objective functions. This technique finds a set of parameters which minimize or 

maximize simultaneously all the objective functions, generally satisfying some 

constraints. In multi-objective optimization problems, conflicting objectives require a 

set of optimal solutions (largely known as the Pareto set), instead of a single optimal 

solution, which is typically the case in mono-objective optimization problems 

[Veldhuizen and Lamont, 2000; Deb et al., 2002; Vrugt et al., 2003; Fu et al., 2005]. 

When an optimal solution cannot be replaced by one which improves an objective 

without worsening another, it is called a nondominated solution or Pareto-optimal 

solution. The plot of the objective functions whose nondominated solutions are in the 

Pareto set is called the Pareto frontier [Coello, 2006]. One of these Pareto-optimal 

solutions cannot be considered better than other without additional information, 

demanding the definition of as many Pareto-optimal solutions as possible [Deb et al., 

2002]. 

 

2.4 Genetic algorithms 

Genetic algorithms (GAs) belong to the class of evolutionary algorithm (EAs), which 

generate solutions to optimization problems using techniques that mimic natural 

evolution (according to Darwin´s theory of evolution) and simulate the natural 

selection process, by selecting the set of parameters that produces the fittest output to 

the data. Traditional GAs are customized to accommodate multi-objective problems 

by using specialized fitness functions and introducing methods to promote solution 

diversity [Konak et al., 2006]. EAs are suitable to solve multi-objective optimization 

problems because these algorithms deal simultaneously with a set of possible 

solutions (called population), which enables the computation of multiple Pareto-

optimal solutions in a single algorithm run. Some multi-objective optimization 

algorithms are susceptible to the shape of the Pareto frontier and may not work when 

it is concave or discontinuous, but EAs have the advantage of being less susceptible 

to such characteristics [Coello, 2006]. 
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2.5 Hierarchical optimization 

The hierarchical optimization is used for solving decentralized problems with 

multiple influencing factors, such as the optimization of ecosystem models [Wu et 

al., 2002; McMahon et al., 2007]. These are complex models that represent nonlinear 

processes and self-organized elements/components such as soil, plants and 

atmosphere. In order to be solved hierarchically, optimization problems should be 

separated into groups according to common characteristics and these groups should 

be hierarchically organized. For example, ecosystem functioning can be separated by 

the different temporal scales of the processes within and between components. The 

optimization decisions are sequential and independent at each level. Despite this and 

the optimization done for each problem own benefit, all the other model results are 

affected by the previous optimizations [Lai, 1996].  
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3. METHODOLOGY 

 

3.1 IBIS model 

The IBIS (Integrated Biosphere Simulator) was designed to connect land and 

hydrologic processes, land biogeochemical cycles and vegetation dynamics into a 

single modeling framework [Foley et al., 1996; Kucharik et al., 2000]. The model 

represents a wide range of processes, including land surface physics (solar and 

infrared radiative transfer through the canopy, turbulent processes, water interception 

and heat and mass transfer by canopy), canopy physiology, plant phenology, 

vegetation dynamics and competition, and carbon and nutrient cycling. All processes 

are hierarchically organized and operate on different time scales, from minutes 

(radiative fluxes) to years (carbon allocation). The model is forced by hourly inputs 

of air temperature and specific humidity, precipitation, wind speed, short- and long-

wave incoming radiative fluxes. 

Among the different processes and variables simulated by IBIS, seven output 

variables were chosen to be optimized, according to the availability of field data: 

outgoing photosynthetically active radiation (PARo), fraction of absorbed 
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photosynthetically active radiation (fAPAR), net radiation (Rn), friction velocity 

(u*), sensible heat flux (H), latent heat flux (LE) and net ecosystem exchange (NEE). 

IBIS has 43 potential parameters for calibration that are described in Table 1. 

 

3.2 Site description and observed data 

This study used data from an Amazon micrometeorological site: Tapajós National 

Forest (K67), an intensive field site located near km 67 of the Santarém-Cuiabá 

highway (02° 51’ 25’’S, 54° 58′ 15’’W), south of Santarém, Pará, Brazil. The typical 

land cover is evergreen broadleaf forest, formed mainly by evergreen and some 

semideciduous species. The forest spans 5 km to the east, 8 km to the south and 40 

km to the north, before bordering pasture [Saleska et al., 2003]. Canopy height is 40 

m on average, with emerging trees reaching up to 55 m [Costa et al., 2010]. 

This is an intensive data collection site, including measurements of meteorological 

variables (air temperature and specific humidity, precipitation, wind speed, short- 

and long-wave incoming radiative fluxes) and fluxes of mass, energy and momentum 

(PARo, fAPAR, Rn, u*, NEE, H, LE) [Saleska et al., 2003; Costa et al., 2010]. Other 

ecological measurements like leaf area index, net primary production and biomass 

were also taken at this site, but were not included in this study. 

 

3.3 Data gap-filling and data filtering 

Observed data used as model input usually present gaps. These data gaps were filled 

using interpolation, according to Senna et al. [2009]. This method uses three different 

equations: the first one is used when the gap duration is less than or equal to 3 hours, 

the second equation is used when the gap duration is greater than 3 hours or less than 

24 hours and the third is used when the gap duration is greater than or equal to 24 

hours.  

Three different types of data filtering were performed before the model’s evaluation 

[Senna et al., 2009]. The first was the input data filtering, which eliminated periods 

with missing data in order to avoid inconsistencies produced by data gap-filling. The  
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 Table 1: Potential parameters for the calibration of IBIS 

Parameter 
name  

Computational 
notation 

Description 

ρVIS rhoveg_vis Leaf reflectance on upper canopy (visible) (dimensionless) 
ρNIR rhoveg_NIR Leaf reflectance on upper canopy (NIR) (dimensionless) 
τVIS tauveg_vis Leaf transmittance on upper canopy (visible) (dimensionless) 
τNIR tauveg_NIR Leaf transmittance on upper canopy (NIR) (dimensionless) 

χu chifuz 
Leaf orientation factor on upper canopy (-1 vertical, 0 random, 1 
horizontal) 

Vmax vmax_pft 
Maximum capacity of enzyme Rubisco at 15 °C on upper canopy 
(mol[CO2]m−2s−1) 

m coefmub Coefficient for stomatal conductance (dimensionless) 
CS chs Heat capacity of stems on upper canopy (J kg−1m−2) 
CU chu Heat capacity of upper leaves (J kg−1m−2) 
CL chl Heat capacity of lower canopy leaves and stems (J kg−1m−2) 

β2 beta2 Parameter of fine roots distribution (Jackson rooting profile) 
(dimensionless) 

fa funca_coef Temperature function for aboveground biomass (stems) (dimensionless) 
fb funcb_coef Temperature function for belowground biomass (roots) (dimensionless) 

Rmr rroot_coef Maintenance respiration coefficient for root  (s−1) 
Rmw rwood_coef Maintenance respiration coefficient for wood (s−1) 
Rg rgrowth_coef Growth respiration coefficient (fraction) (dimensionless) 
tv tempvm_coef Vmax thermal stress (dimensionless) 
ms stressf_coef Factor of the soil moisture stress  (dimensionless) 
clit

ll clitll_coef Initial value of carbon in leaf litter pool (lignin) (kg C m-2) 
clit

lm clitlm_coef Initial value of carbon in leaf litter pool (metabolic) (kg C m-2) 
clit

ls clitls_coef Initial value of carbon in leaf litter pool (structural) (kg C m-2) 
clit

rl clitrl_coef Initial value of carbon in fine root litter pool (lignin) (kg C m-2) 
clit

rm clitrm_coef Initial value of carbon in fine root litter pool (metabolic)  (kg C m-2) 
clit

rs clitrs_coef Initial value of carbon in fine root litter pool (structural)  (kg C m-2) 
clit

wl clitwl_coef Initial value of carbon in woody litter pool (lignin) (kg C m-2) 
clit

wm clitwm_coef Initial value of carbon in woody litter pool (metabolic) (kg C m-2) 
clit

ws clitws_coef Initial value of carbon in woody litter pool (structural) (kg C m-2) 
csoi

pas csoipas_coef Initial value of carbon in soil (passive humus) (kg C m-2) 
csoi

slon csoislon_coef Initial value of carbon in soil (slow unprotected humus) (kg C m-2) 
csoi

slop csoislop_coef Initial value of carbon in soil (slow protected humus) (kg C m-2) 
wsoi wsoi_coef Initial soil moisture (m3m-3) 

k kfactor Multiplication factor of decay constant for carbon pools (dimensionless) 
τL tauleaf Foliage biomass turnover time constant (years) 
τR tauroot Fine root biomass turnover time constant (years) 
τW tauwood0 Wood biomass turnover time constant (years) 

SLA specla Specific leaf area (m2kg−1) 
aL aleaf Carbon allocation fraction to leaves (dimensionless) 
aR aroot Carbon allocation fraction to fine roots (dimensionless) 
aW awood Carbon allocation fraction to wood (dimensionless) 
d dispu_coef Zero-plane displacement height for upper canopy (m) 

log(Zol) alogl_coef Natural logarithm of roughness length of lower canopy (dimensionless) 
log(Zou) alogu_coef Natural logarithm of roughness length of upper canopy (dimensionless) 

 avmuir_coef Average diffuse optical depth (m3m-3) 
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second was the NEE filtering by a friction velocity threshold. Data was also 

eliminated from the analysis if the condition 0.6  <  +  < 1.4  was not 

satisfied for daily averages. 

 

3.4 OPTIS 

OPTIS, developed by Varejão-Jr. et al. (2012), is a hierarchical optimization 

algorithm based on the multi-objective genetic algorithm NSGA-II (Nondominated 

Sorted Genetic Algorithm II) [Deb et al., 2002]. This algorithm has limitations when 

dealing with a large number of objective functions at once, which accounts for loss 

of optimization efficiency [Luan et al., 1996]. Therefore, the maximum number of 

simultaneous objective functions considered in this study was three. In the multi-

objective optimization, we can define the best solution for the optimization problem 

using different metrics [Fonseca et al., 1996; Deb et al., 2002]. This study considered 

as the best solution, the point with the smallest Euclidean distance from the origin in 

the Pareto frontier [Varejão-Jr. et al., 2012].  

OPTIS was originally implemented to provide an automatic and multi-objective 

hierarchical calibration of the LSEM IBIS. The interaction between IBIS and OPTIS 

is minimal (Figure 1). The optimization algorithm changes the parameters of the 

model and reads its output data. In this way, IBIS is executed externally to the 

optimization algorithm and OPTIS is practically independent from the IBIS version 

or even from the model to be calibrated itself [Varejão-Jr. et al., 2012]. 

 

3.5 IBIS’ sensitivity analysis 

The SA is able to detect which model parameters mostly influence the model results 

[Hamby, 1994] and how the variation in the output of a model can be apportioned in 

qualitative or quantitative terms [Saltelli et al., 2000; 2008]. In addition to the 

identification of each influential factor, the SA also tries to qualify their relative 

importance. 

To overcome the limitation of the Morris method (due to the random initiation) and 

to eliminate outliers, the Morris algorithm was applied ten times and, to choose and 
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quantify the most sensitive parameters, the average of the sum of the measures µ* 

[Saltelli et al., 2005] and σ [Morris, 1991] were used.  

 

 

Figure 1: OPTIS structure [Varejão et al., 2012]. 

 

 

3.6 Mono-objective calibration 

Two types of mono-objective calibrations were performed. First, seven overfit 

calibrations were run [Hawkins, 2004], optimizing all 43 available parameters for 

each of the seven output variables. A second set of seven mono-objective calibrations 

was also run. In this set, the only parameters used where those to which the model is 

most sensitive, selected by the SA.  
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3.7 Multi-objective hierarchical calibration 

In a multi-objective hierarchical calibration each parameter can be associated to a 

single hierarchical level. Thus different results are expected for different 

arrangements of the same variables, since when the model is optimized at a certain 

hierarchical level, the parameters of the previous level have already been determined 

and remain fixed. 

The best result (smallest MAE) between the two mono-objective runs (overfit and 

using SA) is the reference to analyze and understand the other calibrations, according 

to Equation 1. The comparison between mono-objective and hierarchical calibration 

provides a relative performance index (D) of the calibration method. The multi-

objective calibration efficiency is proportional to the index D value. 

The relative performance index D is defined as the average of the individual ratios 

between the objective function of the best mono-objective overfit calibration output 

(fmono) and the objective function of the multi-objective calibration output (fmulti). 

Mathematically, 

1

1
monon

i

multi
i i

f
D

n f
     (1) 

where n is the number of objective functions and the D value should be between 0 

and 1.  

In order to organize the variables in hierarchical levels, the output variables were 

separated into two groups: the first related to radiative fluxes (PARo, fAPAR, Rn) 

and the second related to turbulent fluxes (u*, H, LE, NEE).  Each group may be 

arranged in one or more hierarchical levels. Even though the order of the output 

variables within a group may be changed, the order in which the objective functions 

are optimized must be respected by the groups, because a necessary condition of the 

hierarchical approach is that the optimization moves from the fastest to the slowest 

process. 

Two types of analyses were performed. First, the simultaneous (traditional) multi-

objective calibration was compared to the hierarchical multi-objective calibration, 
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when such comparison was possible (n ≤ 3). Then the hierarchical calibration 

optimizing all model outputs was performed as described below. 

To facilitate the interpretation of the results, the multi-objective hierarchical 

calibration was divided in three parts. Initially, only output variables related to 

radiative fluxes were optimized, as described in section 3.7.1. Two or three variables 

were hierarchically optimized, considering one or two hierarchical levels (Table 2). 

Afterwards, only output variables related to turbulent fluxes were optimized, as 

shown in section 3.7.1. A number from two to four variables were hierarchically 

optimized, considering one or two hierarchical levels as well (Table 3). 

Finally, the output variables of any of the previous groups were optimized (section 

3.7.2). A number from two to seven variables were hierarchically optimized, with the 

number of hierarchical levels varying from two to four. 

 

3.7.1 Comparison between simultaneous and hierarchical calibration 

Two methods of calibration were compared for the group of variables related to 

radiative fluxes (PARo, fAPAR and Rn) as well as for the group of variables related 

to turbulent fluxes (u*, H, LE, NEE). Hereinafter, curly brackets {} were used to 

identify output variables that were simultaneously optimized. Hence the 

simultaneous calibration is denoted by all variables in the same bracket (e.g., 

{PARo-fAPAR-Rn}), whereas the hierarchical calibration is denoted by a sequence 

of brackets, e.g. {PARo-fAPAR}{Rn}, in which the variables were optimized 

following the brackets sequence. 

There are ten different simulation combinations that can be separated in four 

simulations using one hierarchical level (simultaneous calibration) and six 

simulations using two hierarchical levels (Table 2). 

It should be noted that the order of variables in the same bracket ({PARo-Rn} or 

{Rn-PARo}) is irrelevant, since the optimization is simultaneous. On the other hand, 

the order of hierarchical levels ({PARo}{Rn} or {Rn}{PARo}) may affect the 

results, thus all combinations were tested. 
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It is also important to highlight in Table 2 that PARo and fAPAR are present either 

individually or in the same hierarchical level, but not in two different hierarchical 

levels. This is explained by the fact the parameter χu is as important to PARo as to 

fAPAR, so they must either be optimized simultaneously or individually, but not 

sequentially. 

To optimize the turbulent fluxes variables, there are twenty-four different simulation 

combinations that can be separated in ten simulations using one hierarchical level 

(simultaneous calibration) and fourteen simulations using two hierarchical levels 

(Table 3). As explained for radiative flux variables, because the order of hierarchical 

levels may affect the results, all combinations were tested. 

 

Table 2: List of optimization experiments considering the group of variables related 

to radiative fluxes. 

Simultaneous Hierarchical 

{PARo-fAPAR}  

{PARo-Rn} {PARo}{Rn} 

 {Rn}{PARo} 

{fAPAR-Rn} {fAPAR}{Rn} 

 {Rn}{fAPAR} 

{PARo-fAPAR-Rn} {PARo-fAPAR}{Rn} 

 {Rn}{PARo-fAPAR} 

 

The variables H, LE and NEE cannot be separated in different hierarchical levels 

because the most sensitive parameters for them are the same (β2,Vmax, Rg and others), 

thus they must be optimized simultaneously in the same hierarchical level. 

 

3.7.2 Hierarchical calibration 

When all variables (related to radiative and turbulent fluxes) are taken into account, 

there are 397 simulation combinations that can be separated in 31 simulations using 

two output variables, 85 using three output variables, 122 using four output variables, 
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113 using five output variables, 45 using six output variables and 6 simulations using 

all seven output variables. 

The combination of variables was carried out as described in section 3.7.1, 

emphasizing that variables from different groups (radiative and turbulent fluxes) 

cannot be calibrated simultaneously in the same hierarchical level because the main 

assumption of the hierarchical optimization is that it is performed from the fastest to 

the slowest processes. 

 

Table 3: List of optimization experiments considering the group of variables related 

to turbulent fluxes. 

Simultaneous Hierarchical 

{H-LE} 

 {H-NEE} 

 {LE-NEE} 

 {u*-H} {u*}{H} 

 

{H}{u*} 

{u*-LE} {u*}{LE} 

 

{LE}{u*} 

{u*-NEE} {u*}{NEE} 

 

{NEE}{u*} 

{H-LE-NEE} 

 {u*-H-LE} {u*}{H-LE} 

 

{H-LE}{u*} 

{u*-H-NEE} {u*}{H-NEE} 

 

{H-NEE}{u*} 

{u*-LE-NEE} {u*}{LE-NEE} 

 

{LE-NEE}{u*} 

 

{u*}{H-LE-NEE} 

  {H-LE-NEE}{u*} 
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4. RESULTS AND DISCUSSION 

 

4.1 IBIS’ sensitivity analysis 

A rank determining the sensitivity of each variable to each parameter was built using 

the average of ten sensitivity measures (µ* + σ) (Table 4). The greater the sum, the 

more sensitive is the model to that parameter. As shown in Table 4, PARo, fAPAR, 

Rn, H and LE are sensitive to 30 parameters, u* to 25 parameters and NEE to 37 

parameters. 

When the variables are separated into different hierarchical levels, it is possible to 

choose which parameters will be in each hierarchical level, considering that one 

parameter can be calibrated only once. Such decisions were made according to the 

degree of sensitivity shown in Table 4.  

Some examples about how the division of the parameters was carried out are shown 

in Table 5. Despite the fact that the variables are the same, simulations with different 

order of the hierarchical levels can result in a different parameter configuration, e.g. 

{fAPAR}{Rn} and {Rn}{fAPAR} (Table 5). In the former, fAPAR is calibrated 

using only 5 parameters because a calibration using only these parameters is enough 
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Table 4: Degree of sensitivity (µ* + σ) of all parameters for each output variables 

according to the Morris method. Unit of the degree of sensitivity is the same of the 

output variable. 

 Output variables 

Parameter 
PA

R
o 

fA
PA

R
 

R
n u*
 

H
 

LE
 

N
EE

 

ρVIS 2.7741 0.0238 1.0061 0.0014 1.2781 0.2770 0.0866 
ρNIR 0.3338 0.0165 2.9942 0.0034 4.3265 0.6197 0.0830 
τVIS 0.4307 0.0088 0.1844 0.0003 0.2798 0.0986 0.0304 
τNIR 0.1302 0.0058 0.7311 0.0007 1.0033 0.1357 0.0368 
χu 2.5591 0.0388 2.6206 0.0066 3.2947 1.3362 0.2181 

Vmax 1.8075 0.0697 8.5504 0.0186 8.2274 2.9153 0.3867 
m 0.1847 0.0146 0.5654 0.0013 1.2764 1.2890 0.2162 
CS 0.0074 0.0013 0.0847 0.0015 0.1541 0.1920 0.0126 
CU 0.0049 0.0003 0.0300 0 0.0510 0.0470 0.0056 
CL 0.0040 0.0007 0.0469 0 0.1041 0.2111 0.0044 
β2 0.4456 0.0228 1.1070 0.0031 1.0951 0.9740 0.1314 
fa 0.1990 0.0165 0.2727 0.0012 0.3332 0.1459 0.0407 
fb 0.2031 0.0176 0.8200 0.0025 0.7640 0.2567 0.0659 

Rmr 0.2204 0.0250 1.2808 0.0035 1.0604 0.4059 0.0964 
Rmw 0.2028 0.0107 0.4380 0.0017 0.5719 0.3015 0.0400 
Rg 0.8858 0.0656 4.6257 0.0146 5.2825 1.1712 0.5643 
tv 1.0953 0.0366 2.7070 0.0065 2.9048 1.4507 0.3595 
ms 0.0203 0.0025 0.1052 0 0.1594 0.0905 0.0210 
clit

ll 0 0 0 0 0 0 0 
clit

lm 0 0 0 0 0 0 0 
clit

ls 0 0 0 0 0 0 0.0022 
clit

rl 0 0 0 0 0 0 0 
clit

rm 0 0 0 0 0 0 0 
clit

rs 0 0 0 0 0 0 0.0035 
clit

wl 0 0 0 0 0 0 0 
clit

wm 0 0 0 0 0 0 0 
clit

ws 0 0 0 0 0 0 0.0023 
csoi

pas 0 0 0 0 0 0 0.0006 
csoi

slon 0 0 0 0 0 0 0.0014 
csoi

slop 0 0 0 0 0 0 0.0527 
wsoi 0.2179 0.0068 0.5588 0.0013 0.4516 0.5251 0.0833 

k 0 0 0 0 0 0 0.0184 
τL 0.7217 0.0377 1.8662 0.0054 2.5818 1.0698 0.2470 
τR 0.1342 0.0136 0.7323 0.0028 0.9929 0.3675 0.0811 
τW 0.0942 0.0061 0.1839 0.0043 0.3480 0.1141 0.0438 

SLA 0.1681 0.0181 1.3231 0.0020 1.8983 0.3192 0.0845 
aL 0.1334 0.0270 1.3143 0.0028 1.8930 0.4402 0.0814 
aR 0.1823 0.0093 1.0189 0.0022 1.0221 0.5253 0.0743 
aW 0.0150 0.0004 0.0443 0.0002 0.0764 0.0169 0.0026 
d 0.0166 0.0014 0.1338 0.0090 0.4498 0.1562 0.0225 

log(Zol) 0.0062 0.0011 0.0279 0 0.0502 0.0192 0.0026 
log(Zou) 0.0076 0.0005 0.0367 0.0009 0.0724 0.0313 0.0053 

μ 0.0068 0.0008 0.3909 0 0.1989 0.0874 0.0043 
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Table 5: Parameters optimized in the calibration experiments related to radiative flux variables. Each pair of bracket represents one 

hierarchical level. Some parameters are not shown in the table because they are not used in any calibration below. 

  Output Variables 

 
One hierarchical level   Two hierarchical levels 

Parameter {PARo-fAPAR} {PARo-Rn} {fAPAR-Rn} {PARo-fAPAR-Rn} 
 

{PARo}{Rn} {Rn}{PARo} {fAPAR}{Rn} {Rn}{fAPAR} {PARo-fAPAR}{Rn} {Rn}{PARo-fAPAR} 
ρVIS x x x x 

 
x 

  
x x 

  
x x 

  
x 

ρNIR x x x x 
  

x x 
  

x x 
  

x x 
 τVIS x x x x 

 
x 

  
x x 

  
x x 

  
x 

τNIR x x x x 
  

x x 
  

x x 
  

x x 
 χu x x x x 

 
x 

  
x x 

  
x x 

  
x 

Vmax x x x x 
  

x x 
  

x 
 

x 
 

x x 
 m x x x x 

  
x x 

  
x 

 
x 

 
x x 

 CS x x x 
   

x x 
  

x 
 

x 
 

x x 
 CU x x x 

   
x x 

  
x 

 
x 

 
x x 

 CL x x 
    

x x 
  

x 
   

x x 
 β2 x x x x 

  
x x 

  
x 

 
x 

 
x x 

 fa x x x x 
  

x x 
  

x 
 

x 
 

x x 
 fb x x x x 

  
x x 

  
x 

 
x x 

  
x 

Rmr x x x x 
  

x x 
 

x 
  

x x 
  

x 
Rmw x x x x 

  
x x 

 
x 

  
x x 

  
x 

Rg x x x x 
  

x x 
  

x 
 

x 
 

x x 
 tv x x x x 

  
x x 

  
x 

 
x 

 
x x 

 ms x x x x 
  

x x 
  

x 
 

x 
 

x x 
 wsoi x x x x 

  
x x 

  
x 

 
x 

 
x x 

 τL x x x x 
  

x x 
  

x 
 

x 
 

x x 
 τR x x x x 

  
x x 

  
x 

 
x 

 
x x 

 τW x x x x 
  

x x 
  

x 
 

x 
 

x x 
 SLA x x x x 

  
x x 

  
x 

 
x 

 
x x 

 aL x x x x 
  

x x 
  

x 
 

x 
 

x x 
 aR x x x x 

  
x x 

  
x 

 
x 

 
x x 

 aW x x x x 
  

x x 
  

x 
 

x 
 

x x 
 d x x x x 

  
x x 

  
x 

 
x 

 
x x 

 log(Zol) x x 
 

x 
      

x 
   

x x 
 log(Zou) x x 

 
x 

  
x x 

  
x 

 
x 

 
x x 

 μ x x x x     x x     x x     x x   
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to get a satisfactory result of fAPAR. Furthermore, Rn does not present a good fit if 

simulated with many parameters calibrated to fAPAR. The same happens when Rn is 

in the first hierarchical level and is calibrated using only three parameters.  

 

4.2 Mono-objective calibration 

Mono-objective calibrations were performed in two different ways: calibrations 

using all 43 available parameters (overfit) and calibrations using only the sensitive 

parameters (Table 4). The MAE results for both mono-objective calibrations are 

shown in Table 6. For the seven optimized variables, the optimizations using only the 

SA parameters produced the smallest MAE in all cases. 

 

Table 6: MAE results for the mono-objective calibrations. fmono,overfit is the simulation 

using all 43 available parameters and fmono,SA is the simulation using only the 

parameters selected according to the sensitivity analysis validation 

Output fmono,overfit fmono,SA fmono,best 

PARo (μmol m
-2 s-1) 1.37125 1.36715 1.36715 

fAPAR 0.00592 0.00583 0.00583 

Rn (W m-2) 16.53813 16.52972 16.52972 

u* (m s-1) 0.10018 0.10008 0.10008 

H (W m-2) 16.90152 16.76446 16.76446 

LE (W m-2) 36.36789 35.97890 35.97890 

NEE (μmol CO2 m-2 s-1) 3.81659 3.80435 3.80435 

 

When a simulation uses more optimized parameters than what is necessary 

(overfitting), it can result in worse predictions for two reasons: first, the use of a non-

influential parameter adds random variation to the other parameters; second, fewer 

parameters generate a smaller sample space, so the search for the Pareto frontier 

becomes more efficient, yielding better results. 
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In order to understand the MAE results, dispersion and typical day plots were 

produced for each mono-objective calibration. According to Figures 2-8, most 

outputs (except fAPAR and Rn) fit better to the data when only the sensitive 

parameters were used. 

Figure 2 shows the nearly perfect fit of the hourly data of PARo. The model slightly 

overestimated PARo between 9 and 12 hours and underestimated PARo in the first 

hours of the night (Figure 2-b and d). The regression coefficients were a = 1.01 and 

b = -0.19 for the overfit calibration (Figure 2-a) and a = 1.00 and b = -0.14 for the SA 

calibration (Figure 2-c). 

 

a) b) 

c) d) 

Figure 2: PARo results after the mono-objective calibration: a) Dispersion plot and 

b) typical day using all 43 parameters and c) Dispersion plot and d) typical day using 

only sensitive parameters. 

 

Figure 3 shows the mono-objective calibration of fAPAR. The bias between 

observed and simulated data was small, increasing in February (mid of summer) and 

August (mid of spring) (Figure 3-b and d). The regression coefficients were a = 0.84 
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and b = 0.15 for the overfit calibration (Figure 3-a) and a = 0.88 and b = 0.11 for the 

SA calibration (Figure 3-c). 

Figure 4 shows the nearly perfect fit of the hourly data of Rn. The difference 

between both mono-objective calibrations of Rn was small. The regression 

coefficients were a = 0.99 and b = 7.39 for overfit calibration (Figure 4-a) and 

a = 0.99 and b = 7.72 for the SA calibration (Figure 4-c). 

 

a) b)

c) d) 

Figure 3: fAPAR results after the mono-objective calibration a) Dispersion plot and 

b) seasonal variation using all 43 parameters and c) Dispersion plot and d) seasonal 

variation using only sensitive parameters. 

 

Figure 5 shows the mono-objective calibration of u*. The model overestimated u* 

during the day (unstable condition) and underestimated u* during the night (stable 

condition), with a delay of one hour between the simulated and the observed 

maximum values (Figure 5-b and d). This is an indication that the model formulation 

for turbulence is incomplete, and mere adjustments in the parameters are insufficient 

to match the results. The regression coefficients were a = 0.52 and b = 0.14 for the 
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overfit calibration (Figure 5-a) and a = 0.53 and b = 0.14 for the SA calibration 

(Figure 5-c). 

Figure 6 shows the mono-objective calibration of H. The bias between observed and 

simulated data was small and the overestimation of H was noticeable during the night 

(Figure 6-b and d). On the other hand, H simulations during daytime were 

satisfactory. The regression coefficients were a = 0.73 and b = 13.13 for the overfit 

calibration (Figure 6-a) and a = 0.76 and b = 13.06 for the SA calibration (Figure 6-

c). This was a fairly surprising result, considering that the model does not generate 

enough turbulence (Figure 5) and means that OPTIS has found a way to improve  the 

IBIS simulation for H, by excessively heating up the canopy during daytime, through 

changes in the net radiation and leaves heat capacity (results not shown). This is a 

common behavior in mono-objective optimizations, indicating the need for multiple 

output optimizations. 

 

a) b)

c) d) 

Figure 4: Rn results after the mono-objective calibration a) Dispersion plot and b) 

typical day using all 43 parameters and c) Dispersion plot and d) typical day using 

only sensitive parameters. 
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Figure 7 shows the mono-objective calibration of LE. The model was not able to 

estimate the high values during the day, causing a bias of about 80 W m-2 in the daily 

peak (Figure 7-b and d). This is a direct consequence of the low turbulence generated 

by the model, although, contrary to H, in this case the optimizer apparently could not 

find alternative ways to increase LE values. The regression angular coefficients were 

a = 0.59 for the overfit calibration (Figure 7-a) and a = 0.60 for the SA calibration 

(Figure 7-c), just slightly higher than the angular coefficient for the u* optimization 

(a = 0.52). 

Figure 8 shows the mono-objective calibration of NEE. The model overestimated 

NEE during the day and there was an advance of one hour in the minimum value 

(Figure 8-b and d). The regression coefficients were a = 0.76 and b = -1.02 for the 

overfit calibration (Figure 8-a) and a = 0.76 and b = -0.99 for the SA calibration 

(Figure 8-c). 

 

a) b) 

c) d) 

Figure 5: u* results after the mono-objective calibration a) Dispersion plot and b) 

typical day using all 43 parameters and c) Dispersion plot and d) typical day using 

only sensitive parameters. 
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a) b) 

c) d) 

Figure 6: H results after the mono-objective calibration a) Dispersion plot and b) 

typical day using all 43 parameters and c) Dispersion plot and d) typical day using 

only sensitive parameters. 

a) b)

c) d) 

Figure 7: LE results after the mono-objective calibration a) Dispersion plot and b) 

typical day using all 43 parameters and c) Dispersion plot and d) typical day using 

only sensitive parameters. 
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a) b) 

c) d) 

Figure 8: NEE results after the mono-objective calibration a) Dispersion plot and b) 

typical day using all 43 parameters and c) Dispersion plot and d) typical day using 

only sensitive parameters. 

 

4.3 Multi-objective calibration 

4.3.1 Comparison between simultaneous and hierarchical calibration 

All combinations of radiative flux variables were tested and the results were 

separated by number of hierarchical levels (Table 7 and Figure 9). One hierarchical 

level is equivalent to the simultaneous (traditional) optimization. For all situations 

(using one or two hierarchical levels), the higher the number of hierarchical levels, 

the better the results: when optimizing PARo and Rn, the values obtained for the 

index D were 0.9787 for the configuration {Rn}{PARo}, 0.9680 for the 

configuration {PARo}{Rn}, and only 0.9129 for the simultaneous configuration 

{PARo-Rn}. A similar behavior was observed when optimizing fAPAR and Rn, with 

D values of 0.8770 for the configuration {Rn}{fAPAR}, 0.8669 for the configuration 

{fAPAR}{Rn}, and the smallest D value of 0.7600 for the simultaneous 

configuration {fAPAR-Rn}. When optimizing all the three radiative flux variables 

(PARo, fAPAR and Rn), the index D values obtained were 0.8948 for the 

configuration {Rn}{PARo-fAPAR}, 0.8443 for the configuration {PARo-
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fAPAR}{Rn}, and only 0.8222 for the simultaneous configuration {PARo-fAPAR-

Rn}. 

 

Table 7: Calibration results using only radiative flux output variables. The bracket is 

used to identify the hierarchical level, h is the number of hierarchical levels and n is 

the output quantity. 

        
,mono best

multi

f

f
      

h n 
Optimization 

configuration 
PARo  fAPAR  Rn  Index D 

1 2 {PARo-fAPAR} 0.9726 0.7447 - 0.8586 

1 2 {PARo-Rn} 0.8582 - 0.9676 0.9129 

2 2 {PARo}{Rn} 0.9699 - 0.9661 0.9680 

2 2 {Rn}{PARo} 0.9707 - 0.9867 0.9787 

1 2 {fAPAR-Rn} - 0.6796 0.8405 0.7600 

2 2 {fAPAR}{Rn} - 0.8235 0.9103 0.8669 

2 2 {Rn}{fAPAR} - 1.0294 0.7246 0.8770 

1 3 {PARo-fAPAR-Rn} 0.8888 0.7527 0.8250 0.8222 

2 3 {PARo-fAPAR}{Rn} 0.9334 0.6250 0.9746 0.8443 

2 3 {Rn}{PARo-fAPAR} 0.9587 0.7955 0.9304 0.8948 

 

The same procedure was carried out for turbulent flux variables (Table 8 and Figure 

10). In general, the model fitted better when two hierarchical levels were used, 

instead of one. When optimizing u* and H (or LE), the highest D value was obtained 

for the configuration {H}{u*} (or {LE}{u*}), the second highest D value was 

presented by the simultaneous configuration {u*-H} (or {u*-LE}) and the smallest D 

value was found for the configuration {u*}{H} (or {u*}{LE}). It is important to 

highlight the use of the variables u* and NEE together: they fit better in the same 

hierarchical level (simultaneous optimization), but it is not possible to calibrate NEE 

in a different hierarchical level of H and LE, and the algorithm cannot support more 

than three variables in the same hierarchical level. For three variables, the 

simultaneous configuration was responsible for the smallest D value in two cases 

({u*-H-NEE} and {u*-LE-NEE}) and the highest D value was obtained for the 
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configuration using u* in the second hierarchical level ({H-LE}{u*}, {H-LE}{u*}, 

{LE-NEE}{u*}).  

 

 

Figure 9: Index D for radiative flux output variables as a function of the number of 

optimized outputs (n), separated by the type of optimization (simultaneous or 

hierarchical). 

 

 

Figure 10: Index D for turbulent flux output variables as a function of the number of 

optimized outputs (n), separated by the type of optimization (simultaneous or 

hierarchical). 
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Table 8: Calibration results using only turbulent flux output variables. The bracket is 

used to identify the hierarchical level, h is the number of hierarchical levels and n is 

the output quantity. 

   

,mono best

multi

f

f
  

h n Optimization 
configuration u* H LE NEE Index D 

1 2 {H-LE} - 0.9451 0.9093 - 0.9272 
1 2 {H-NEE} - 0.7243 - 1.0090 0.8666 
1 2 {LE-NEE} - - 0.8757 0.9666 0.9211 
1 2 {u*-H} 0.9806 0.9774 - - 0.9790 
2 2 {u*}{H} 0.8510 0.9802 - - 0.9156 
2 2 {H}{u*} 1.0000 0.9970 - - 0.9985 
1 2 {u*-LE} 0.9517 - 0.9507 - 0.9512 
2 2 {u*}{LE} 0.8623 - 0.9967 - 0.9295 
2 2 {LE}{u*} 0.9459 - 0.9919 - 0.9689 
1 2 {u*-NEE} 0.9011 - - 0.9765 0.9388 
2 2 {u*}{NEE} 0.8510 - - 0.9991 0.9250 
2 2 {NEE}{u*} 0.8178 - - 1.0465 0.9322 
1 3 {H-LE-NEE} - 0.9075 0.8990 0.9757 0.9274 
1 3 {u*-H-LE} 0.9726 0.8713 0.9436 - 0.9292 
2 3 {u*}{H-LE} 0.8510 0.9464 0.9209 - 0.9061 
2 3 {H-LE}{u*} 0.9808 0.9563 0.9101 - 0.9491 
1 3 {u*-H-NEE} 0.8764 0.7180 - 0.9398 0.8447 
2 3 {u*}{H-NEE} 0.8623 0.8707 - 0.9074 0.8801 
2 3 {H-NEE}{u*} 0.9715 0.9158 - 0.9962 0.9612 
1 3 {u*-LE-NEE} 0.8711 - 0.8170 0.9797 0.8892 
2 3 {u*}{LE-NEE} 0.8510 - 0.9831 0.9555 0.9299 
2 3 {LE-NEE}{u*} 0.9484 - 0.9467 0.9736 0.9563 
2 4 {u*}{H-LE-NEE} 0.8510 0.8720 0.9407 0.9343 0.8995 
2 4 {H-LE-NEE}{u*} 0.9759 0.8827 0.9153 0.9830 0.9392 

 

 

4.3.2 Results for the hierarchical calibration 

The analysis of the hierarchical calibration results indicates that it is possible to 

underline some combinations of variables that generate the best results and also to 

identify the position of each variable and the distribution of parameters among the 

hierarchical levels to provide for the best fit of observed data. 

For radiative flux variables, the best result for D was always obtained when Rn was 

in the first hierarchical level and PARo or/and fAPAR were in the second 

hierarchical level (Table 7). These results may be dependent on the choice of the 

baseline parameters and thus may not be generic. When optimizing fAPAR and Rn 



 
 

31 
 

in the configuration {Rn}{fAPAR}, the ratio fmono/fmulti for fAPAR was greater than 

one, i.e., the mono-objective calibration was not the best possible calibration. There 

are two possible explanations: either the number of parameters used was more than 

necessary or the values used for the baseline parameters were not the most 

appropriate. 

For turbulent flux variables, the best result was always obtained when u* was in the 

second hierarchical level and H or/and LE or/and NEE were in the first hierarchical 

level (Table 8).  The same discussion presented for fAPAR can be applied to NEE in 

two cases: configurations {H-NEE} and {NEE}{u*}. 

For radiative and turbulent fluxes, confirming the trend of the previous results, the 

best result considering the index D (Table 9) occurred for the order below: 

1° hierarchical level: Rn 

2° hierarchical level: PARo and fAPAR 

3° hierarchical level: H, LE and NEE 

4° hierarchical level: u* 

Hierarchical calibration performs a global calibration of the model and optimizes, as 

well as possible, all variables simultaneously. As expected, the individual results for 

hierarchical calibration are worse than the results for the mono-objective calibration. 

In order to understand the hierarchical calibration results, the dispersion and typical 

day plots were produced for each individual variable of the best seven-objective 

calibration (Figures 11-17). These results can be compared to those obtained for the 

mono-objective calibration, presented in Figures 2 to 8. 

According to Figures 11 and 13, PARo and Rn still had a nearly perfect fit and Rn 

underestimated the higher values during the day (Figure 13-b). The regression 

coefficients were a = 0.99 and b = 0.09 for PARo (Figure 11-a) and a = 0.91 and 

b = 22.63 for Rn (Figure 13-a). 
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Table 9: Calibration results using radiative and turbulent flux output variables. The bracket is used to identify the hierarchical level, h is 

the number of hierarchical levels and n is the output quantity. 

  
          

,mono best

multi

f

f
          

h n Output PARo  fAPAR  Rn  u* H LE NEE Index D 

3 7 {PARo-Rn-fAPAR}{ustar}{H-LE-NEE} 0.6706 0.5556 0.7468 0.8856 0.2626 0.7031 0.7298 0.6506 

4 7 {PARo-fAPAR}{Rn}{ustar}{H-LE-NEE} 0.9476 0.6140 0.7192 0.8882 0.2720 0.7524 0.6555 0.6927 

4 7 {Rn}{PARo-fAPAR}{ustar}{H-LE-NEE} 0.7944 0.6481 0.7246 0.8863 0.2733 0.7242 0.8479 0.6998 

3 7 {PARo-Rn-fAPAR}{H-LE-NEE}{ustar} 0.6706 0.5556 0.7468 0.9136 0.2723 0.7228 0.7901 0.6674 

4 7 {PARo-fAPAR}{Rn}{H-LE-NEE}{ustar} 0.9476 0.6140 0.7192 0.8920 0.2761 0.7174 0.8037 0.7100 

4 7 {Rn}{PARo-fAPAR}{H-LE-NEE}{ustar} 0.7944 0.6481 0.7246 0.9025 0.2813 0.7254 0.8248 0.7002 
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a) b) 

Figure 11: PARo results after the multi-objective calibration a) Dispersion plot and 

b) typical day. 

 

Figure 12 shows fAPAR after the hierarchical calibration. Monthly data presented 

good fit, with overestimated results during the winter (Figure 12-b). The regression 

coefficients were a = 0.76 and b = 0.23 (Figure 12-a). 

Figure 14 shows the multi-objective calibration of u*. As observed for the mono-

objective calibration, the model overestimated u* during the day and underestimated 

u* during the night, with a delay of one hour in the maximum value (Figure 14-b). 

The regression coefficients were a = 0.44 and b = 0.16 (Figure 14-a). 

 

a) b) 

Figure 12: fAPAR results after the multi-objective calibration a) Dispersion plot and 

b) seasonal variation. 
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a) b) 

Figure 13: Rn results after the multi-objective calibration a) Dispersion plot and b) 

typical day. 

 

a) b) 

Figure 14: u* results after the multi-objective calibration a) Dispersion plot and b) 

typical day. 

 

Figures 15 and 16 show the multi-objective calibration of H and LE, respectively. 

The bias between observed and simulated data was noticeable and the overestimation 

of H and LE during the day was approximately 140 W.m-2 (Figures 15-b and 16-b). 

The regression coefficients were a =1.68 and b = 47.60 for H (Figure 15-a) and 

a = 0.43 and b = 24.02 for LE (Figure 16-a).  
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a) b) 

Figure 15: H results after the multi-objective calibration a) Dispersion plot and b) 

typical day. 

 

a) b) 

Figure 16: LE results after the multi-objective calibration a) Dispersion plot and b) 

typical day. 

 

The results for H, LE and NEE were remarkably different from those obtained for the 

mono-objective optimization. All three variables must be optimized simultaneously, 

in the third hierarchical level, because the three output variables are sensitive to the 

same parameters. It was observed earlier that the simultaneous optimization usually 

decreases the algorithm’s performance, and this became very clear when comparing 

Figures 15-17 to Figures 6-8. Because of several constraints in this optimization 

(including H, LE and NEE in the same hierarchical level and energy conservation by 

the model), the optimizer chose parameters that reduced stomatal conductance and 

increased canopy temperature (results not shown). 

A curious result became apparent when radiative fluxes were optimized together with 

turbulent fluxes: the performance of the model to simulate H dropped considerably 

(fH
mono/fH

multi was in the range of 0.27 in Table 9, whereas it ranged from 0.71 to 0.99 
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in Table 8). Although the drop in the ratio fmono/fmulti is an expected characteristic of 

the hierarchical multi-objective optimization as the number of objectives increase, in 

no other optimized variable the performance presented such a significant drop. In 

addition to the constraints already discussed, an important characteristic of the 

observed and the simulated data was co-responsible for this result: whereas the 

model must conserve energy (Rn – G = LE + H), the observed energy flux data 

obtained from net radiometers and eddy covariance systems is rarely conservative, 

and Rn – G is usually greater than LE + H (See Twine et al. [2000] for a general 

discussion, or Costa et al. [2010] for a discussion specific for this site). 

Given these errors in the data, the optimizer tends to make different choices in the 

mono or multi-objective optimizations. In the H mono-objective optimization, there 

is no constraint on Rn simulation, so the optimizer can freely modify it to provide the 

adequate net radiation for the correct simulation of H. In the multi-objective 

optimization, simulated Rn matches the observations, which eliminates the 

possibility of any energy adjustments, and more radiative energy must be portioned 

between the two turbulent fluxes (G is about 1% of Rn, so it was not considered in 

this discussion). 

An attempt to compensate this problem in energy balance closure was made by using 

only Rn, LE and H values in days when LE + H was within 40% of Rn (see 

discussion in Costa et al. [2010]). However even after filtering, in most days, Rn was 

significantly different from LE + H. A better approach to correct this problem may 

be to correct LE and H according to the observed Bowen ratio, so that long-term 

LE + H matches long-term Rn, as proposed by Twine et al. [2000]. This would 

ensure energy conservation in the long-term observed data. 

Figure 17 shows the multi-objective calibration of NEE. The model bias at midday 

was about 7 μmol CO2 m-2 s-1 and there was an advance of one hour in the minimum 

value (Figure 17-b). The regression coefficients were a = 0.59 and b = 0.12 (Figure 

17-a). Being influenced by the stomatal conductance in the same way as LE, the 

factors that affect the correct partition of energy between LE and H also affect NEE. 
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a) b) 

Figure 17: NEE results after the multi-objective calibration a) Dispersion plot and b) 

typical day. 

 

4.4 Discussion on the performance index 

Figure 18 shows all results of the performance index D versus the number of 

optimized outputs, separated by the number of hierarchical levels, from 1 to 4. Four 

conclusions can be drawn from this figure. 

First, it is generally true that, for the same number of optimized outputs, the higher 

the number of hierarchical levels used, the better the performance of the optimized 

model (higher D). This is in agreement with the detailed analysis provided in Section 

4.3.1. 

Second, the best possible model’s performance is very high (D > 0.98) for selected 

configurations for n ≤ 3, and when n = h. For n > 3, it was not possible to avoid 

constraints in the experiment design, and these constraints reduced model’s 

performance. Maximum model’s performance (maximum D) dropped about 1% per 

additional objective function added (from 1.00 to 0.98) in the range from n = 1 to 

n = 3, about 4.5% per additional objective function added (from 0.98 to 0.89) in the 

range from n = 3 to n = 5, and about 9% per additional objective function added 

(from 0.89 to 0.71) in the range from n = 5 to n = 7 (Figure 18). Overall, when 

compared to mono-objective calibrations, the index D of multi-objective calibrations 

dropped about 30% for seven variables. This performance is satisfactory, considering 

that the use of many variables provides a more reliable model, because all the 

variables are optimized to correctly simulate all the implemented processes. 

 



 
 

38 
 

Figure 18: Index D for radiative and turbulent flux output variables versus the 

number of optimized outputs (n), separated by the type of optimization (simultaneous 

or hierarchical). 

 

Third, results indicate that D drops at faster rates if n increases. This seems to be a 

consequence of the constraints introduced by the need to simultaneously optimize 

specific variables, notably fAPAR and PARo, and NEE, H and LE, which are 

sensitive to the same parameters. Further research on the criteria to select the 

parameters to be optimized at each hierarchical level may remove some of these 

constraints, and may help improve the model results for a large value of n. 
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Fourth, as previously discussed, constrains and a poor optimization configuration can 

result in poor model’s performance (as low as 50% of the mono-objective one). 
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5. CONCLUSIONS 

 

An evaluation of the efficiency of an algorithm of hierarchical calibration, which is 

based in the temporal organization of natural ecosystems and of the IBIS land 

surface/ecosystem model was carried out. The automatic system of calibration 

(OPTIS) is based in the multi-objective genetic algorithm NSGA-II and enables the 

calibration of many (more than 3) output variables. The application of OPTIS allows 

for the general calibration of the model, adjusting the variables simulated by IBIS in 

a more reliable way. This study used the sensitivity analysis developed by Morris to 

select the most important parameters for calibration. Sensitivity analysis is the most 

important step for a well fit model, because the results are highly dependent on the 

distribution of the parameters in the hierarchical levels. Furthermore, in a mono-

objective calibration, the variable fits better to the data if it is calibrated using only 

the sensitive parameters and not all the available ones. 

The index D was used to evaluate the performance of the multi-objective calibrations 

independently of the errors embedded to the results due to model limitations. First, 

the hierarchical calibration was compared to the simultaneous (traditional) technique 

and the results showed that hierarchical calibration outperformed the simultaneous 

calibration in most of the situations tested. In general, the higher the number of 

hierarchical levels, the better the model’s performance, quantified by the index D. As 

a second step, the basic characteristics (slope and concavity) of the curve D x n were 

determined. Some constraints introduced by the need of simultaneous optimization 
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(radiative flux variables PARo and fAPAR, and turbulent flux variables H, LE and 

NEE) and the difficulty in selecting parameters to be optimized in each hierarchical 

level, resulted in a faster drop of D as n increased. The decrease in the slope of the 

D x n curve is desirable, since the use of more measurements at different time scales 

is the only way to comprehensively improve models. 

Model’s performance depends on the optimization configuration. As a first rule, this 

study identified that the configuration responsible for the best model fit occurs if Rn 

is calibrated before PARo and fAPAR, and u* is calibrated after H, LE and NEE. 

However, the model’s performance after optimization is extremely sensitive to 

variations in the allocation of parameters to each hierarchical level. The choice of 

these parameters is in principle governed by the results of the sensitivity analysis. 

Nevertheless, the qualitative nature of the Morris method, its inability to evaluate the 

interactions among parameters, as well as its random nature, limited the role of the 

SA in the parameter decision process, and considerable modeler intuition was used to 

allocate the parameters to each hierarchical level. Although it is likely that the index 

D for model’s performance will always decrease with the increase of n, it may be 

possible to keep the decrease rate in the range of 1% of D per objective added to the 

problem (per unitary increase in n). This was the rate obtained in this study before 

constraints started to decrease the optimizer’s performance, and it may be extended 

to higher values of n if the following limitations are overcome: 

First, given the importance of choosing the right parameters at each hierarchical 

level, further research is necessary about the criteria of parameter selection at each 

hierarchical level, including other sensitivity analyses techniques that account for the 

interaction among parameters;  

Second, a sensitivity analysis that provides quantitative, comparable measures across 

parameters could also be the solution for the constraints that arise when two or more 

variables are sensitive to the same parameters;  

Third, the performance of the objective functions calibrated at the initial hierarchical 

levels depends on the model baseline parameters. This dependence could be 

minimized by using an iterative hierarchical calibration. Multiple interactions may be 

necessary to evaluate solution convergence. A first iteration would choose well-
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adjusted parameters to be the baseline for the second iteration; the process could be 

iterated until increases in D are considered negligible;  

Fourth, other sources of error in LSEMs must be identified, quantified, and 

corrected. In particular, model limitations such as the lack of representation of 

important processes may weaken the entire calibration process. A poor model 

performance during the mono-objective calibration could be indicative of poor model 

formulation. After improvements in the code are made, new parameters can be 

included in the list of calibrated parameters;  

Fifth, some sites may present a single measurement of several important variables, 

usually slowly-varying variables that are important for slow processes (NPP, 

biomass, etc.). Although the model’s long-term performance may improve if these 

variables are included as objective functions, such procedure considerably decreases 

the index D (the mono-objective optimization has no problem in exactly matching a 

single observation, and hence the ratio fmono/fmulti becomes zero). A possible solution 

could be to include these measurements collected at several sites. 

Finally, reference data must meet strict quality criteria to avoid contamination of 

model parameters. In particular, flux data should be corrected to ensure energy 

conservation.  

Based on this study, it is possible to identify several subjects for further research. 

First, at site-level scales, all the considerations made in this study regarding the SA 

must be thoroughly studied to reduce the constraints that limit optimization 

performance. Second, the multi-site optimization enables the use of variables that 

have a single measurement at each site such as NPP or biomass. Third, the study of 

the effect of vegetation composition considering the comparison between single 

species sites (pastures) versus multiple species sites (forests) [Fischer et al., in press] 

is recommended. One additional topic for future research using the hierarchical 

optimizer is the integration of site-level regional optimization using regional 

estimates from remote sensing and field data networks, such as the RAINFOR 

network - an international effort to monitor structure, composition and dynamics of 

the Amazonian forest in order to better understand their relationship to soil and 

climate [Malhi et al., 2002]. Data from hydrologic networks could also be used, if the 

LSEM is coupled to a river routing model. 
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The power of the hierarchical calibration to use a high number of objective functions 

is highly dependent on the removal of constraints for model’s performance. After 

these constraints are removed, the model may be able to achieve a high performance 

for large values of n. 
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