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Capítulo II - Amazon rain forest subcanopy flow and the carbon budget: 

Manaus LBA Site - a complex terrain condition 
2
 

 

 

Abstract 

 

On the moderately complex terrain covered by dense tropical Amazon rainforest (Reserva 

Biologica do Cuieiras – ZF2 - 02◦36′17.1′′S, 60◦12′24.5′′W) subcanopy horizontal and 

vertical gradients of the air temperature, CO2 concentration and wind field were measured for 

dry and wet periods in  2006. We tested the hypothesis that horizontal drainage flow over this 

study area is significant and can affect the interpretation of the high carbon uptake rates 

reported by previous works. A similar experimental design as the one by Tóta et al. [2008] 

was used with a network of wind, air temperature and CO2 sensors above and below the forest 

canopy. A persistent and systematic subcanopy nighttime upslope (positive buoyancy) and 

daytime downslope (negative buoyancy) flow pattern on a moderately inclined slope (12%) 

was observed. The micro-circulations observed above the canopy (38 m) over the sloping area 

during nighttime presents a downward motion indicating vertical convergence and 

correspondent horizontal divergence toward the valley area. During the daytime an inverse 

pattern was observed. The micro-circulations above the canopy were driven mainly by 

buoyancy balancing the pressure gradient forces. In the subcanopy space the micro-

circulations were also driven by the same physical mechanisms but probably with the stress 

forcing contribution. The results also indicated that the horizontal and vertical scalar gradients 

(e.g., CO2) were modulated by these micro-circulations above and below canopy, then 

suggesting that estimates of advection using previous experimental approaches are not 

appropriate due to the tri-dimensional nature of the vertical and horizontal transport locally. 
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1. Introduction 

 

The terrestrial biosphere is an important component of the global carbon system. The 

uncertainty level of its long term exchanges estimates is a challenge and has resulted in 

ongoing debate [Baldocchi et al., 2008; Aubinet et al., 2008]. For monitoring long-term net 

ecosystem exchange (NEE) of carbon dioxide, energy and water in terrestrial ecosystems, 

tower-based eddy-covariance (EC) techniques have been established worldwide [Baldocchi et 

al., 2008].  

It is now recognized that the EC technique has serious restrictions for application over 

complex terrain and under calm and stable nighttime conditions with low turbulence or 

limited turbulent mixing of air [e.g., Goulden et al., 1996; Black et al., 1996; Baldocchi et al., 

2001; Massman and Lee, 2002; Loescher et al., 2006; Aubinet et al., 2008]. To overcome this 

problem, the friction velocity (u*)-filtering approach has been formalized by the FLUXNET 

committee for the estimation of annual carbon balances [Baldocchi et al., 2001; Gu et al., 

2005]. This approach simply discarded calm nights flux data (often an appreciable fraction of 

all nights) and replaced them with ecosystem respiration rates found on windy nights [Miller 

et al., 2004]. Papale et al., [2006] pointed out that this approach itself must be applied with 

caution and the friction velocity (u*) corrections threshold is subject to considerable concerns 

and is very site specific. Miller et al., [2004] reported that depending of the u* threshold value 

used to correct the flux tower data at Santarem LBA site the area can change from carbon sink 

to neutral or carbon source to the atmosphere.  

The transport of CO2 by advection process has been suggested by several studies as the 

principle reason for the „„missing‟‟ CO2 at night [Lee, 1998; Finnigan, 1999; Paw U et al., 

2000; Aubinet et al., 2003; Feigenwinter et al., 2004; Staebler and Fitzjarrald, 2004]. The 

search for this missing CO2 has spurred a great deal of research  with the goal of explicitly 

estimating advective fluxes in field experiments during the last decade, in order to correct the 

NEE bias over single tower eddy covariance measurements (Aubinet et al., 2003, 2005; 
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Staebler and Fitzjarrald, 2004, 2005; Feigenwinter et al., 2004; Marcolla et al., 2005; 

Wang et al., 2005; Sun et al., 2007; Heinesch et al., 2008; Leuning et al., 2008; Tóta et al., 

2008; Yi et al., 2008; Feigenwinter et al., 2009a, b).  

The complexity of topography and the presence of the valley close to the eddy flux 

tower have increased the importance to investigating if subcanopy drainage flow account for 

the underestimation of CO2 as past studies have asserted [Froelich and Schmid, 2006]. The 

Manaus LBA site is an example of moderately complex terrain covered by dense tropical 

forest. The NEE bias is reported by previews works [Kruijt et al., 2004; de Araújo et al, 2008; 

de Araújo, 2009; and references there in], and a possible explanation for this is that advection 

process is happening in that site. This work examines subcanopy flow dynamics and local 

micro-circulations features and how they relate to CO2 spatial and temporal distribution on the 

Manaus LBA site in contrast with previous work done during the Santarem LBA Site 

experiment [see, Tóta et al., 2008]. 

 

 

2. Material and Methods 

 

2.1. Site description 

 

The study site (54° 58‟W, 2° 51‟S) is located in the Cuieiras Biological Reserve, 

controlled by National Institute for Amazon Research (INPA), about 100 km northeast from 

Manaus city. At this site, named K34, was implemented a flux tower with 65m height to 

monitoring long term microclimate, energy, water and carbon exchanges (Araújo et al., 2002), 

and various studies that have been conducted in its vicinity. The measurements are part of the 

Large-Scale Biosphere-Atmosphere experiment in Amazonia (LBA). Figure 1 presents the  

study site location including the topographical patterns where the maximum elevation is 120m 

and the total area (upper panel) is 97.26 km2, with distribution of the 31% of plateau, 26% of 

slope and 43% of valley [Rennó et al., 2008]. The site area is formed by a topographical 

feature with moderately complex terrain including a landscape with mosaics of plateau, valley 

and slopes, with elevation differences about 50m (Figure 1), and with distinct vegetation 
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cover (Figure 2). The eddy flux tower at Manaus K34 site has footprints that encompass this 

plateau-valley mosaic. 

 

 

 

Figure 1: Detailed measurements towers‟s view in the ZF-2 Açu catchment (East-West valley 

orientation) from SRTM-DEM datasets.The large view in the above panel and below panel 

the points of measurements (B34 – Valley, K34 – Plateau, and subcanopy Draino system 

measurements over slopes in south and north faces (red square). 

 

The vegetation cover on the plateau and slope areas is composed by tall and dense 

terra firme (non-flood) tropical forest with height varying 30 to 40m, maximum surface area 

density of the 0.35 m
2
m

-3
 (Figure 2b, see also Parker et al., [2004]), and average biomass of 
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the 215 to 492 ton.ha
-1

 [Laurance et al., 1999; Castilho, 2004]. On the valley area the 

vegetation is open and smaller with heights from 15 to 25 m, but with significant surface area 

density more than the 0.35 m
2
m

-3
 (Figure 2b). The soil type on the plateau and slopes area is 

mainly formed by Oxisols (USDA taxonomy) or clay-rich ferrasols ultisols (FAO soil 

taxonomy), while on the valley area, waterlogged podzols (FAO)/spodosols (USDA) with 

sand soil low drained predominates. Also, in the valley area the presence of small patchy of 

Campinarana typical open vegetation with low biomass is also common [Luizão et al., 2004].  

 

 

 
 

Figure 2: (a) IKONOS‟s image of the site at Açu Cachment with level terrain cotes and 

vegetation cover and (b) vegetation structure measured from LIDAR sensor over yellow 

transect in (a). From (a) the valley vegetation (blue color) and vegetation transition to 

plateau areas (red colors).    

a) 

b) 
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The precipitation regime on the site show wet (December to April) and dry (June to 

September – less than 100 mm.month
-1

) periods. The total annual rainfall is about 2400 mm 

and the average daily temperature is from 26 (April) to 28˚C (September). For more 

detailed information about the meteorology and hydrology of this site see Waterloo et al. 

[2006], Cuartas et al. [2007], Hodnett et al. [2008], Tomasella et al. [2008], Malhi et al. 

[2008] and de Araújo [2009]. 

 

 

2.2. Measurements and intrumentation 

 

The datasets used in this study include a measurement system to monitor airflow 

above and below the forest, horizontal gradients of CO2, and the thermal structure of the air 

below the canopy, named “DRAINO System” [see, Tóta et al., 2008]. The data used in this 

study were collected during the wet season (DOY 1-151) and the dry season (DOY 152-

250) of the year 2006. Complementary information was used from flux tower K34 (LBA 

tower) on the plateau, and sonic anemometer data collected in the valley flux tower (B34, 

see de Araújo [2009] for details).  

The flux tower K34 includes turbulent EC flux and meteorological observations of 

the vertical profiles of the air temperature, humidity and CO2/H2O concentrations, and 

vertical profile of wind speed, as well as radiation measurements. The fast response eddy 

flux data were sampled at 10 Hz and slow response (air temperature and wind profiles) at 

30 min average [see Araújo et. al., [2002] for details information]. 
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- DRAINO measurement System – Manaus LBA ZF2 site  

 

The Draino measurement system used in Manaus LBA Site was similar to that 

developed by State University of New York, under supervision of Dr. David Fitzjarrald), 

and applied at Santarem LBA Site, including the same methodological procedures and 

sampling rates [see, Tóta et al., 2008]. However, due to the terrain complexity, it was 

modified for Manaus forest conditions including a long distance power line and duplication 

of CO2 observations for different slopes areas (Figure 4). The Draino measurement system 

used in Manaus LBA Site was mounted in an open, naturally ventilated wooden house 

(Figure 3). 

 

  

Figure 3: Draino measurement system used in Manaus LBA (South Face, see also Figure 4).  

 

The system and sensors were deployed (Figure 4) with measurements of air 

temperature and humidity (red points), CO2 concentration (green points), and wind speed 

and direction (blue points), for both south and north faces. The observations of the 3-D 

sonic anemometer were sampled at 10 Hz and all the other parameters (T, RH, and CO2) 

were sampled at 1 Hz (Figure 4). 
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The acquisition system developed at ASRC was employed (Staebler and 

Fitzjarrald, 2005). It consists of a PC operating with Linux, an outboard Cyclades multiple 

serial port (CYCLOM-16YeP/DB25) collecting and merging serial data streams from all 

instruments in real time, the data being archived into 12-hour ASCII files.  At Manaus LBA 

Site two systems in the both south and north valley slope faces were mounted (Figure 3 and 

4). 

 

 

Figure 4: Draino measurement system (South and North Slope face) implemented at Manaus 

LBA Site, including topographic view and instrumentation deployed. 

 

For each slope face, a single LI-7000 Infrared Gas Analyzer (LI-COR inc., Lincoln, 

Nebraska, USA) was used. A multi-position valve (Vici Valco Instrument Co., Inc.) 

controlled by a CR23x Micrologger (Campbell Scientific, Inc., Logan, Utah, USA), which 

also monitored flow rates was also used. This procedure minimizes the potential for 

systematic concentration errors to obtain the horizontal and vertical profiles. Following 

Staebler and Fitzjarrald [2004] and Tóta et al. [2008] a similar field calibration was 

2D4 
3D 

2D2 

2D3 

3D 

2D5 

2D1 
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performed during the observations at Manaus LBA Site, including initial instrument 

intercomparison. The result was similar that obtained by Tóta et al. [2008], with CO2 mean 

standard error was < 0.05 ppm and mean standard error of about 0.005 ms-1 for wind speed 

measurements. After intercomparison, the sonic anemometers and the CO2 inlet tubes were 

deployed as shown in Figure 4. 

On the south face, the instrument network array (Figure 4 and Table 1) consisted of 6 

subcanopy sonic anemometers, one 3-D ATI (Applied Technologies Inc., CO, USA) at 2m 

elevation in the center of the grid (named 3-D ATI), and 5 SPAS/2Y (Applied Technologies 

Inc., CO, USA), 2-component anemometers (1 sonic at 6m in the grid center and 4 sonic 

along the periphery at 2m, see Figure 4), with a resolution of 0.01 m s-1. Also, a Gill HS (Gill 

Instruments Ltd., Lymington, UK) 3-component sonic anemometer was installed above the 

canopy (38 m). The horizontal gradients of CO2/H2O were measured in the array at 2 m 

above ground, by sampling sequentially from 4 horizontal points surrounding the main tower 

location at distances of 70-90m, and from points at 6 levels on the main Draino south face 

tower, performing a 3 minute cycle. On the north face, similar CO2 measurements were 

mounted including a 6 level vertical profile and 6 points in the array at 2 m above ground, 

performing a 3 minute cycle.    

On both slope faces the air was pumped continuously through 0.9 mm Dekoron tube 

(Synflex 1300, Saint-Gobain Performance Plastics, Wayne, NJ, USA) tubes from meshed 

inlets to a manifold in a centralized box.  A baseline air flow of 4 LPM from the inlets to a 

central manifold was maintained in all lines at all times to ensure relatively “fresh” air was 

being sampled. The air was pumped for 20 seconds from each inlet, across filters to limit 

moisture effects. The delay time for sampling was five seconds and the first ten seconds of 

data were discarded. At the manifold, one line at a time was then sampled using an infrared 

gas analyzer (LI-7000, Licor, Inc.). To minimize instrument problems, only one LI-7000 gas 

analyzer sensor, for each slope face, was used to perform vertical and horizontal gradients of 

the CO2. 
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Table 1.  DRAINO system Sensors at ZF2 LBA Manaus Site 

Level (m) Parameter Instrument 

38 u‟ v‟ w‟ T‟ Gill 3D sonic anemometers 

2 u‟ v‟ w‟ T‟ ATI 3D sonic anemometer 

6,2 u‟ v‟ w‟ T‟ CATI/2  2D sonic anemometers 

2 CO2 Concentration (horizontal array) LI-7000 CO2/H20 analyzer 

38,26,15,3,2,1 CO2, H20 Profile (Sourth face) LI-7000 CO2/H20 analyzer 

35,20,15,11,6,1 CO2, H20 Profile (North face) LI-7000 CO2/H20 analyzer 

18,10,2,1 Air Temperature and Humidity Aspirated thermocouples 

 

 

3 – Results and Discussion 

 

The datasets analyzed in this study were obtained during the periods defined by dry 

(DOY 1-150 January to June) and wet (DOY 152-250 July to October) of the 2006. Figure 5 

presents an example of the datasets cover, with 10 days composite statistic, for CO2 

concentration and air temperature at south face area of the DRAINO system and the total 

precipitation on the plateau K34 tower measurements.  

 

Figure 5: 10 days time series of the CO2 concentration (a), air temperature (b) (DRAINO 

System) and total precipitation (c) (plateau tower). 
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The measurements covered almost the entire year of 2006, including dry, wet and 

the transition from wet to dry season. The air temperature amplitude above canopy on the 

slope area of the DRAINO System was higher, as expected, in the dry season. A good 

relationship is observed between CO2 concentration and air temperature with much large 

amplitudes in the dry season than in the wet season. It is probably associates with less vertical 

mixing during dry than wet season producing much higher subcanopy CO2 concentration and 

vertical gradient along the forest.  

 

 

3.1. Air Temperature field 

 

3.1.1 - Plateau K34 tower 

 

The vertical profiles of air temperature from plateau K34 tower show a very different 

pattern from that on the slope area, probably due to canopy structure differences (Figure 2b, 

Parker et al., [2004]). The canopy structure is important for characterizing its thermal regime 

as it can be seen in Figure 6. The mean canopy layer stores large quantity of heat during the 

daytime and distributes it downward and upward throughout the nighttime (Figure 6, 7). 

Above canopy layer, over plateau area, the neutral or unstable conditions were 

predominant during the daytime for both seasons (Figure 6a, c). While during the nighttime 

stable conditions are presents for the dry period (Figure 6b) and neutral to stable conditions 

for the wet period (Figure 6d). Similar pattern has been reported elsewhere for plateau forests 

in the Amazonia (Fitzjarrald et al., [1990]; Fitzjarrald and Moore, [1990]; Kruijt et al., 

[2000]; Goulden et al., [2006]). 
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Figure 6: Boxplot of the virtual potential temperature vertical profile for dry (a, b) and wet 

periods (c, d) of the 2006 during night (b, d) and daytime (a, c), on the plateau K34 tower. 

 

The below-canopy layer ambient air on the plateau area  was stable at all times (Figure 

6a, b, c, d), indicating that this layer is stable  where the cold air concentrated in the lower part 

of the canopy air space as shown in Figure 7.  

Figure 7 presents daily course of the vertical deviation of the virtual potential 

temperature, e.g., ([   
                    

   
  ]), the temperature differences from each level in 

relation to the vertical average profile. The subcanopy air space was relatively colder during 

both dry and wet season, showing a similar feature of strong inversion. The same pattern was 

reported by Kruijt et al. [2000] measured over a tower located 11 km northeast of our site 

with a similar forest composition. 

Note that a very interesting length scale can be extracted from the observation when 

the deviation is about zero. That vertical length scale has mean value of about 30 m during 

nighttime and 20 m during daytime (yellow color in the Figure 7a, b). Those values are 

comparable with above canopy hydrodynamic instability length scale used in most averaged 
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wind profile models [Raupach et al., [1996]; Pachêco, [2001]; Sá e Pachêco, [2006]; 

Harman and Finnigan, [2007]]. 

 

 

Figure 7: Daily course of the vertical deviation of the virtual potential temperature 

([   
                    

   
  ]), during dry (a) and wet (b) periods of the 2006, over plateau K34 

tower. 

 

 

3.1.2 – DRAINO System Slope tower 

 

On the slope area south face (see Figure 2) air temperature at 5 levels underneath the 

canopy (heights 17, 10, 3, 2, and 1 m) was measured. The observations of the air temperature 

profile inside canopy are used to monitor the possible cold or warm air layer that generates 

drainage flow on the slope area. Figure 8 presents observations of the virtual potential 

temperature vertical profile for both dry and wet periods, during both day and nighttime. The 

pattern on the slope area is clearly very different when compared with that on the plateau K34 

area (Figure 6), except in dry period during daytime when the air was stable inside the 

canopy.  
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During nighttime (wet and dry periods) a very stable layer predominates with 

inversion at about 9 m. These can likely be interpreted as a stable layer between two 

convective layers is associated with cold air (Figure 8). Yi [2008] hypothesized about a similar 

„„super stable layer‟‟ developing during the night in sloping terrain at the Niwot Ridge 

AmeriFlux site. This hypothesis suggests that above this layer, vertical exchange is most 

important (vertical exchange zone) and below it horizontal air flow predominates 

(longitudinal exchange zone). The relationship between subcanopy thermal structure and the 

dynamic of the airflow on the slope area will be discussed in next section.  

 

 

Figure 8: Boxplot of the virtual potential temperature vertical profile for dry (a, b) and wet 

periods (c, d) of the 2006 during night (b, d) and daytime (a, c), on the slope area DRAINO 

System tower (south face, see Figure 2). 

 

Figure 9 presents a daily cycle composite of the virtual potential temperature deviation 

from the vertical average ([        
       

  ]). There is persistent cold air entering during 

nighttime for both dry and wet periods, a characteristic pattern observed on the slope area. It 

is a very different vertical thermal structure from that of the plateau area. The cold air in the 

subcanopy upper layer is probably associated with top canopy radiative cooling, while the 
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cold air just above floor layer is associated with upslope wind from the valley area (as 

discussed later in the next section).  

The average of the vertical gradient virtual potential temperature was negative during 

nighttime and positive during daytime for both periods dry and wet (Figure 9). This 

observation shows that during the daytime a relative cooler subcanopy air layer predominates 

creating a inversion conditions. In contrast, a relative hotter subcanopy air layer generates a 

lapse conditions during nighttime. In general that is not a classical thermal condition find on 

the sloping open areas without dense vegetation. A similar pattern was reported by Froelich 

and Schmid [2006] during “leaf on” season.   

 

 

 

Figure 9: Daily course of the vertical deviation of the virtual potential temperature for dry (a) 

and wet (b) periods of the 2006, and the virtual potential temperature vertical gradient (c), 

over slope area DRAINO System tower.  
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3.2. Wind field 

 

The LBA Manaus Site has moderately complex terrain when compared with the 

Santarem LBA Site (Figure 1, 2). This complexity generates a wind airflow regime much 

complex to be captured by standard measurement system like a single tower. At the Manaus 

LBA site, we implemented a complementary measurement system on the slope area to support 

the plateau K34 tower and better understand how the airflow above and below the canopy 

interact and also to describe how the valley flow influences the slope airflow regimes. Note 

that the valley in the microbasin is oriented from East to West (Figure 2, 4).     

 

3.2.1 – Horizontal wind regime - above canopy 

 

3.2.1.1 - Plateau K34 tower 

 

Above the canopy (55m above ground level – a.g.l.) on the plateau area K34 tower, the 

wind regime was strongest (most above 2 m.s
-1

) during daytime for both dry and wet periods 

of 2006, with direction varying mostly from southeast and northeast for dry and wet period, 

respectively (Figure 10).  

During nighttime, the wind regime was slower (most below 3 m.s
-1

) and with same 

direction variation from northeast to southeast (Figure 10). As reported by de Araújo [2009], 

the above canopy valley area wind speed and direction was different from that of the plateau 

area, suggesting a decoupling mainly during nighttime. A clear channeling effect on the valley 

wind regime was observed; which was oriented by microbasin topography during both day 

and nighttime, with direction of the flow in the valley area determined by the valley 

orientation [as also reported by de Araújo, 2009]. 
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Figure 10: Frequency distribution of the wind speed and direction. For dry (a, b) and wet (c, 

d) periods from 2006 during day (a, c) and nighttime (b, d), on the plateau K34 tower.  

 

 

3.2.1.2 -DRAINO System slope tower 

 

The above canopy (38 m above ground level – a.g.l.) on the slope area DRAINO 

system south face (see Figure 4, 3D sonic), the wind regime was very persistent from East 

quadrant direction during day and nighttime in both dry and wet periods of the 2006 (Figure 

11). The daytime wind speed during the dry season was between 1 to 3 m s
-1

 and much 

stronger during the wet period with values up to 4 m s
-1

. During the nighttime the wind speed 

was slower than 2 m s
-1

, except from northeast during the wet period. The wind direction 

pattern was similar to that on the plateau K34 tower (Figure 10) prevailing from northeast to 
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southeast. This observation indicates that the airflow above the canopy on the slope area is 

related to how the synoptic flow enters in the eastern part of the microbasin (see Figure 2, 4). 

 

 

Figure 11: Frequency distribution of the wind speed and direction above canopy (38 m above 

ground level – a.g.l). For dry (a, b) and wet (c, d) periods from 2006 during day (a, c) and 

nighttime (b, d), on the slope area at DRAINO system tower.  

 

 

3.2.2 – Horizontal wind regime – Subcanopy array measurements (2 m a.g.l) 

 

In Figure 12 the subcanopy array frequency distribution of the wind speed and 

directions is shown for both dry and wet periods of the 2006, during both day and nighttime. 

The observations show that the airflow in the subcanopy is very persistent and with similar 

pattern during both dry and wet periods of 2006. Note that the south slope area in the 

DRAINO System (see Figure 4) is downslope from south and upslope from north quadrants.  
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Subcanopy daytime wind regime  

 

During daytime, in both dry (Figure 12a-c) and wet periods (Figure 12g-i), the wind 

direction prevailed from south-southeast (190-150 degrees) on the three southernslope regions 

[Figure 12, Top (a, d, g, j), Middle (b, e, h, k) and Low slope part (c, f, i, l)]. The airflow in 

the subcanopy was decoupled from the wind regime above the canopy (Figure 11) most of the 

time.  

The wind direction in the subcanopy airflow was dominated by a daytime downslope 

regime during the majority of the period of study, suggesting a systematic daytime katabatic 

wind pattern. The wind speed in the subcanopy during the daytime was mostly from 0.1 to 0.4 

m/s, and strongest at middle slope region (Figure 12b, e, h, k) about 0.3 to 0.5 m/s or above. A 

similar daytime katabatic wind regime was reported by Froelich and Schmid [2006] during 

“leaf on” season in Morgan-Monroe State Forest (MMSF), Indiana USA.  

The daytime downslope wind was also supported by the subcanopy thermal structure 

(Figure 9), where the air was cooling along the day by inversion of the virtual potential 

temperature profile with a positive vertical gradient (Figure 9c). This results shows that 

subcanopy flows in a sloping dense tropical rainforest are opposite to the classical diurnal 

patterns of slope flows studied elsewhere in the literature [e.g.; Manins and Sawford, 1979; 

Sturman (1987); Amanatidis et al., 1992; Papadopoulos and Helmis, 1999; Kossmann and 

Fiedler, 2000]. It is important to note that few studies have been done in forested terrain and it 

is unclear why similar reversed diurnal patterns have not been observed in studies at other 

forested sites [Aubinet et al., 2003; Staebler and Fitzjarrald, 2004; Yi et al., 2005], except by 

a single point subcanopy measurement observed by Froelich and Schmid [2006]. 
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Figure 12: Frequency distribution of the wind speed and direction in the subcanopy array (2 m 

above ground level – a.g.l) on the microbasin south face slope area at DRAINO horizontal 

array system (see Figure 4). For dry (a-f) and wet (g-l) periods from 2006, during day (a, b, 

c, g, h, i) and nighttime (d, e, f, j, k, l).  

 

 

a) b) c) 

d) e) f) 

g) h) i) 

j) k) l) 
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Subcanopy nighttime wind regime  

 

The nighttime subcanopy wind regime on the slope area (see the terrain on Figure 4) 

was very complex and differentiates from that one above the canopy vegetation.  

It was observed that, on the up-slope part, the nighttime airflow was southeast 

downsloping direction (130°-170°) and northeast-northwest (45°-340°) uphill direction 

(Figure 12d, j). In the middle-part of slope area, the wind moved uphill (from northeast; 30°-

90°) and also downsloping wind direction from southeast (Figure 12e, k), and with lightly 

higher wind speed. And finally, on the lower-part of the slope area (Figure 12f, l) the wind 

direction prevailed from the northeast (10°-70°), indicating upsloping pattern (anabatic). 

Is interesting to note that, on the up-slope area, the wind direction regime (northeast-

northwest, 45°-340°) suggest a reversal lee side airflow (re-circulation or separation zone) 

probably in response to the above canopy wind (see Figure 11b, d). It is has been suggest by 

Staebler [2003] and reported by simulations using fluid dynamic models [Katul and Finnigan, 

2003; Poggi et al., 2008].  

Also, the upsloping subcanopy flows pattern, on the lower-part the slope area, is 

supported by subcanopy relative heat air layer along the slope during the night, as observed by 

lapse rate condition of the virtual potential temperature negative vertical gradient (Figure 9c). 

This observation does not follow the classical concept of nighttime slope flow pattern. 

Froelich and Schmid [2006], has reported similar feature where they found anabatic wind 

regime during nighttime in their seasonal forest study area.  

Figure 13 presents the frequency distribution of the subcanopy wind direction on the 

south face slope area at DRAINO horizontal array system during upsloping (from north 

quadrant) and downsloping (from south quadrant) events.  
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Figure 13: Frequency distribution of the subcanopy wind direction (a) upsloping (from north 

quadrant) and (b) downsloping (from south quadrant) on the south face slope area at 

DRAINO horizontal array system (see Figure 4).  

 

3.2.3 – Mean Vertical wind velocity – subcanopy and above canopy 

 

Several correction methods have been proposed to calculate the mean vertical velocity, 

e.g. linear regression method [Lee, 1998], coordinate rotation [Finnigan et al., 2003] and the 

planar fit method [Wilczak et al., 2001]. We use the linear regression method by Lee [1998] to 

determine the „„true‟‟ mean vertical velocity:                  , where a and b are 

coefficients to be determine, for each αi (10
o
 azimuthal wind direction), by a linear regression 

of measured mean vertical velocity (w) and horizontal velocity (u) in the instrument 

coordinate system.  

Figure 14a presents the original and the correction results by method application of the 

mean vertical velocity as function of wind direction. In Figure 14b, the results of the hourly 

mean vertical velocities for plateau K34, DRAINO system (above and below canopy) and 

a) 

b) 
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valley B34 towers. As expected, low values were observed for all points of measurements, 

but non-zero values were also observed.  

 

 

 

 

Figure 14: Mean vertical velocity raw and correct vertical velocity (a) for DRAINO system 

slope tower (38 m), and hourly mean vertical velocity (b) for: plateau K34 tower (55 m), 

DRAINO system slope tower (above canopy - 38 m and subcanopy - 3 m) and for valley 

B34 (43 m) towers (see Figure 4, for details).  

 

On the plateau area, the mean vertical velocity was always positive indicating upward 

motion or vertical convergence at top of hill during night and daytime. In the valley area 

during nighttime, negative or zero values were observed, indicating a suppression of vertical 

motion (mixing) in the valley, as also reported by de Araújo [2009]. On the other hand, during 

the daytime a transition is observed, where beginning in the morning, downward motion is 

a) 

b) 
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observed, changing after mid-morning to upward motion (Figure 14b). This suggests that 

probably the cold air pooled during night moved downslope and started to warm, resulting in 

a breakdown the inversion over the valley (see de Araújo [2009], for detailed description and 

references there in for this process). The mechanism of the breakdown the inversion process 

over the valley is consistent with positive vertical velocity observed above canopy at slope 

area observed by the DRAINO system tower during daytime (Figure 14b).  

The subcanopy diurnal pattern of the mean vertical velocity observed shows positive 

values during nighttime and negative during daytime, consistent with observed up and 

downsloping flow regime, respectively (Figure 13 a, b). Also this is consistent with thermal 

vertical virtual potential temperature gradient on the slope (see Figure 9c), where during 

nighttime (daytime) an unstable (inversion) condition is associated with upward (downward) 

mean vertical velocity (see Figure 9c).  
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3.3. Phenomenology of the local circulations: Summary 

 

The Figure 15 shows a schematic cartoon of local flow circulation from the previews 

sections observations.  

 

 

Figure 15: Schematic local circulations in the site studied, valley and slopes flow (a), 2D view 

from suggested below and above canopy airflow (b). 

 

The above canopy airflow (red arrow Figure 15a) and forcing mechanisms associate. 

The observations result from previews sessions suggests that the balance of the buoyancy and 

a) 

b) 
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pressure gradient forces generates the airflow or microcirculations patterns in the site 

studied. During nighttime (Figure 15b), in the subcanopy there is an upslope flow reaching 

about 10 m height above ground, associate with positive mean vertical velocity (indicating 

upward movement). Also, above canopy there is a downslope flow associate with negative 

mean vertical velocity, downward convergence above the canopy. The microcirculation along 

the plateau-slope-valley is promotes by an feedback mechanism of accumulation of cold air 

drainage above canopy into the valley center (Figure 15b), creating the forcing need to sustain 

nighttime pattern. The air temperature structure above canopy in the valley (see Araújo, 2009) 

is a good indication of cold air pool in the center of the valley. Maybe, also, the local pressure 

gradient force due the cold air accumulation promoting the upward airflow in the both slopes 

of the valley. During daytime periods an inverse pattern is found (not show), indicating that 

this microcirculation is a systematic pattern in the site. 

 

3.4. CO2 concentration and subcanopy horizontal wind field  

 

The CO2 concentration was measured by DRAINO system on the south face slope area 

for dry and wet periods of the 2006, and on the north face slope during dry period (Figure 4). 

The Figure 16 presents an example, for midnight (local time), of the horizontal wind field and 

spatial CO2 concentration over the DRAINO System south face domain. The wind field was 

interpolated from the blue points onto a 10 m grid. Similar procedures have been reported in 

the literature (Sun et al., 2007; Feigenwinter et al., 2008). The horizontal wind regime plays 

important role in modulating the horizontal spatial distribution of CO2 concentration (Figure 

16). 
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Figure 16: Example at midnight (local time) of the horizontal CO2 concentration over the 

DRAINO System south face domain including an interpolated horizontal wind field (10 m 

grid), note the geographic orientation and the red arrow indicating slope inclination (see 

Figure 4).  

 

In Figure 17 (a, b, c) the typical pattern observed is shown for   both dry and wet 

periods of the 2006 measured by the DRAINO system on the south-facing slope area. During 

the daytime (Figure 17c), the wind prevailed downslope inducing a strong horizontal gradient 

of CO2 in the slope area (about 0.2 ppmv m
-1

). In the evening, periods of changes of the 

horizontal wind pattern (as described in section 3.1) show an upsloping regime in the lower-

part and downsloping in the upper-part of the slope areas (Figure 17b).  The wind regimes 

produce direct responses in the spatial feature of the horizontal gradient of CO2 concentration. 

Later during the night, the upsloping regime is well established and also the horizontal 

gradient of CO2 is growing from lower part of slope to the top (Figure 17a). These 

observations suggest a subcanopy drainage flow and its influence on the scalar spatial 

distribution. Therefore, as discussed in the previews sections, the flow above the canopy 

indicates a reverse pattern of downward motion (negative mean vertical velocity, see section 
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3.2.3) that suggests vertical convergence and possible horizontally divergent flow during 

nighttime. The report by Froelich and Schmid [2006] and more recently Feigenwinter et al., 

[2009a, b] describing similar features of the airflow interaction between above and below 

canopy. 

 

  

Figure 17: Hourly average of the subcanopy (2 m) CO2 concentration and horizontal wind 

speed over DRAINO System south face area during dry period of the 2006, note the 

geographic orientation and the red arrow indicating slope inclination (see Figure 4). The 

axis represents distances from center of the main tower. Daytime (a), transition period - 

evening (b), established nighttime (c).  

 

Along the north face, as shown in the Figure 18, the spatial distribution of the 

horizontal CO2 concentration shows a similar pattern than the south face described previously. 

Despite, that there is no wind information in that area, if one assumes the same spatial 

correlation between horizontal wind and CO2 concentration, is possible suggest that the wind 

should presents an inverse pattern from the south face. Its means that, during daytime the 

downslope wind direction should be from northeast (Figure 18c, from blue to red color). 

c) 

b) 

a) 
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During evening period (Figure 18b) should be indicating downslope (from northeast) in the 

upper part of the north face slope and upslope (from southeast) in the lower part of the slope, 

an inverse feature from Figure 17b. Finally, later in the night, on the north face slope, the 

wind pattern should present an upslope wind direction regime from southeast, an inverse 

regime that one from Figure 17a on the south face slope. 

 

  

Figure 18: Hourly average of the subcanopy (2 m) CO2 concentration on the DRAINO System 

north face area during dry period of the 2006, note the geographic orientation and the red 

arrow indicating slope inclination (see Figure 4). The axis represents distances from center 

of the main tower. Daytime (a), transition period - evening (b), stablished nightime (c). 

 

One possible explanation to this subcanopy slopes wind regime and spatial distribution 

of CO2 concentration, is the valley wind channeling effect and how it is meandering when 

enter in the valley topography [as described by Araújo, 2009]. This valley wind pattern, 

probably causes oscillations as those observed on the CO2 concentration along the day 

(Figures 17, 18), the known “Seiche phenomena” (Spigel and Imberger, 1980). 

 

 

c) 

b) 

a) 
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4. Summary and Conclusions 

 

 

The main objective of this study was to measure and understand the local circulation 

over a dense forest site in Manaus with moderately complex terrain and to verify the existence 

of the drainage flow regimes on slope and valley areas.  

The main pattern of the airflow above and below the canopy in dense tropical forest in 

Amazonia was captured by a relative simple measure system, as also has been done by more 

sophisticated measurements system as those described recently by Feigenwinter et al., [2009a, 

b]. 

As described and discuss in previews sections it was identified drainage flow in both 

day and nighttime periods in the site studied. Evidence of the drainage current above canopy 

was suggested by Goulden et al, (2006) similar to that one observed here. 

It was identified that the local micro-circulation was complicate and presented tri-

dimensional nature where to estimate the advection flux at this site seems uncertain and not 

possible with the limited measurement system employed.  

As reported recently by Feigenwinter et al., [2009a, b], even using a more 

sophisticated measurement design, the level of uncertainties is still high and some processes 

are not yet known and need more exploration perhaps using a more complete spatial 

observation network or even applying model resources (Foken, 2008; Aubinet, 2008, Belcher 

et al., 2008). 

In summary, the drainage flow exists and is observed at K34 LBA site area and  the 

high carbon uptake reported by previews work may be called into doubt  and requires more 

research.  

Also, the use of nighttime correction in order to save the urge necessity to estimate 

long term Net Ecosystem exchange is inappropriate by the using only turbulence information 

from above canopy, as has been pointed out here The interactions above and below canopy 
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breakdown the footprint principle and the representativeness of the eddy flux tower in most 

difficult conditions (complex terrain and calm nights). 

In summary, the drainage flow exists and is observed at K34 LBA site. Very large 

carbon uptake estimates reported previously should be questioned [Kruijt et al., 2004; Araújo 

et al., 2002]. More research is needed. The use of nighttime u* correction to avoid estimating 

canopy storage is inappropriate. One cannot get by using only above canopy turbulence 

information. The interactions between motions above and below canopy question the 

foundations of the footprint analysis [Schuepp et al., 1990; Schimid, 2006]. The 

representativeness of the eddy flux tower is most in question for complex terrain, especially 

on calm nights). 
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CONCLUSÃO GERAL 

 

No Capítulo I foi apresentado que:   

 

- Foi realizado o primeiro esforço em determinar observacionalmente a importância dos 

processos de advecção noturna no balanço de CO2 em uma densa floresta tropical na 

Amazônia.  

- Foi testada a hipótese de que uma persistente advecção horizontal abaixo da floresta existe e 

transporta uma importante quantidade de CO2 para fora do volume de controle representado 

pelas medidas da torre de fluxo do LBA em Santarém.  

- Foi determinada a magnitude dos gradientes horizontais de CO2 e do campo do vento abaixo 

da floresta e encontrado um saldo suficiente de advecção para afetar o balanço de CO2.  

- A metodologia estabelecida foi aplicada e testada para medir os gradientes horizontais de 

CO2 e do vento horizontal dentro da floresta. Esses dados foram complementados pelos 

fluxos turbulentos e observações dos perfis médios obtidos em uma torre de 65 metros de 

altura no mesmo sítio experimental (sessão 2). As medidas foram realizadas durante o 

período das estações seca (DOY 198-238 2003 – Fase 1) e úmida (DOY 278-366 2004 e 1-

32 2005 – Fase 2).  

- Os gradientes horizontais médio de CO2 e do vento horizontal foram da ordem de 

0.02 ppm m
-1

 e 0.12 m s
-1

, respectivamente (seção 3.1).  

- Abaixo da floresta a direção do vento horizontal foi bem correlacionada com a inclinação 

suave do terreno próxima a torre de medida dos fluxos. Foi observado que a direção do 

escoamento abaixo da floresta foi desacoplada do escoamento acima, o que sugere um 

potencial para transporte lateral de CO2 mesmo durante o período diurno (sessão 3.2).  

- O principal mecanismo físico responsável pela geração do escoamento noturno abaixo da 

floresta foi o termo de flutuabilidade negativa (seção 3.3).  
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- A comparação do déficit noturno entre a respiração total do ecossistema e NEE medida no 

sistema de fluxo da torre foi associado à advecção noturna média de CO2, a qual 

representou 73% e 71% do mesmo, para 130 noites analisados durante os períodos seco e 

chuvoso estudados. Isto indica um importante papel da advecção noturna no balanço total 

de CO2.  

- Foi observado também que, durante períodos noturnos com níveis de turbulência 

significativos (u* entre 0.3 a 0.6 m s
-1

, limiares considerados suficiente para fornecer 

corretas medidas pelos fluxos turbulentos), o transporte de CO2 pela advecção horizontal 

foi significativo.  

- Esses resultados confirmam que poucos sítios de medidas de fluxos são suficientemente 

planos e homogêneos para ignorar a priori os efeitos da advecção horizontal. Estimativa 

observacional do efeito da velocidade vertical média no balanço de escalares aparece como 

a maior fonte de incertezas, e medidas continua e de longo prazo com instrumentação mais 

adequada são necessárias para esclarecer este tema. 

 

No Capítulo II foi apresentado que:  

 

- Seguindo a metodologia e design experimental desenvolvido no Capitulo I, foi possível ser 

aplicada também para um sitio experimental com topografia de maior complexidade. 

- Foi observado que existem escoamentos de drenagem horizontal abaixo e acima da floresta, 

e que esses estão fortemente influenciados pela canalização do vento horizontal ao longo do 

vale da microbacia Asu próximo da torre de fluxo (K34) e das medidas nas encostas abaixo 

da floresta (Sistema DRAINO). 

- Especialmente no sítio do LBA em Manaus, não foi possível estimar quantitativamente a 

magnitude da advecção horizontal de CO2, em função da complexa heterogeneidade 

topográfica da área produzindo uma complicada natureza tridimensional do escoamento 
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abaixo e acima da floresta, que se interagem e criando uma barreira para medir em detalhe 

todas as informações com a metodologia e instrumentação disponível neste estudo. 

- As sub-estimativas noturnas das taxas de respiração através de medidas aplicando a técnica 

de “Eddy Covariance” sobre vários tipos de ecossistemas e terrenos já é bem reconhecida 

pela comunidade científica mundialmente. Os estudos observacionais aqui apresentados 

suportam esta hipótese demonstrando a importância do transporte horizontal que ocorre 

abaixo do nível de medida das torres de fluxo de ambos os sítios de medidas do LBA. E 

finalmente adverte que correções dos fluxos turbulentos noturnos com base em condições 

acima da vegetação somente podem ser inapropriadas e com significante incerteza. 

- Como sugestões os estudos de modelagem do tipo LES, já que foi identificado um padrão de 

micro circulações locais de natureza tridimencional, seriam de fundamental importância 

para avaliar e ajudar a entender melhor as observações aqui obtidas. 
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