Com o intuito de selecionar espécies para utilização na recuperação de matas ciliares na margem do rio São Francisco localizada no estado de Sergipe foi realizado um experimento com o objetivo de avaliar o crescimento e as trocas gasosas de plantas de Lonchocarpus sericeus (Poir.) D.C., submetidas a alagamento em condição de viveiro. O experimento foi realizado no Viveiro Florestal do Departamento de Ciências Florestais, da Universidade Federal de Sergipe (UFS), no município de São Cristóvão-SE (11o01’ de latitude S e 37o12’ de longitude W, com altitude de 20 m), estado de Sergipe, Brasil, no período de outubro de 2006 a janeiro de 2007 em condição ambiente. Foi utilizado delineamento experimental inteiramente casualizado (DIC), em fatorial (2x7), dois tratamentos (controle – T0, plantas em capacidade de campo e alagadas – T1) e dias após alagamento (0, 15, 30, 45, 60, 75 e 90 dias). Para simular a condição de alagamento, as plantas foram postas em vasos plásticos de cor preta com volume de 5 L e mais substrato. Após, estes vasos foram acoplados a vasos com volume de 10 L, onde foi acrescida a água até atingir lâmina d’água de 5 cm acima do colo das plantas. As plantas do controle permaneceram em vasos com volume de 5 L com substrato mantido na capacidade de campo. Nas variáveis não destrutivas foram utilizadas 4 repetições por tratamento, avaliadas a cada quinze dias, onde cada repetição consta de 6 plantas, totalizando 24. Para as variáveis destrutivas foram utilizadas 4 repetições por tratamento, avaliadas quinzenalmente a partir de 15 dias após o alagamento, onde cada repetição consta de uma planta totalizando 24 plantas. Desta forma foram utilizadas 48 plantas por tratamento. As variáveis não destrutivas foram altura, diâmetro do colo e número de folhas. Enquanto as variáveis destrutivas analisadas foram massa seca da raiz e parte aérea, razão da massa seca da raiz/parte aérea. Além disso, foram realizadas análises de trocas gasosas mensalmente, sendo avaliadas doze plantas por tratamento, com amostragem de duas folhas, completamente expandidas, por planta. As variáveis biométricas foram submetidas à análise de variância e posteriormente ao teste de média (Tukey p<0,05), enquanto dos valores de trocas gasosas foram retirados os desvios padrões das médias. Diante disso, observamos que o alagamento promoveu a redução em altura e na razão massa seca da raiz/parte aérea, a partir dos 30 dias após aplicação do tratamento. Além disso, as plantas alagadas apresentaram modificações morfológicas como raízes adventícias e hipertrofia das lenticelas, características de espécies tolerantes ao alagamento. A taxa fotossintética líquida foi reduzida em 48,20% em relação ao controle aos 60 dias. Todavia, apesar das reduções nas variáveis de crescimento e trocas gasosas, a espécie Lonchocarpus sericeus mostrou-se promissora na recuperação de mata ciliar, por apresentar modificações morfológicas características de espécies tolerantes ao alagamento.
In order to select species for using in the restoration of riparian forests on the banks of the Sao Francisco River, in the state of Sergipe, an experiment was conducted to evaluate the growth and gas exchange of plants Lonchocarpus sericeus (Poir.) D.C., subject to flooding conditions in the nursery. The experiment was conducted at Forest Nursery, Department of Forest Sciences, Federal University of Sergipe (UFS), the municipality of São Cristóvão, (11 o 01 'S latitude and 37 o 12' longitude W, altitude 20 m) , state of Sergipe, Brazil, from October 2006 to January 2007 under ambient conditions. We used a completely randomized design (CRD), factorial (2x7), two treatments (control - T0, plants at field capacity and flooded - T1) and days after flooding (0, 15, 30, 45, 60, 75 and 90 days). To simulate the condition of flooding, the plants were placed in plastic pots of black color with a volume of 5 L and more substrate. Following these pots were attached to pots with a volume of 10 L, which was added water until it reaches a water depth of 5 cm above the top of the plants. The control plants kept in pots with a volume of 5 L substrate maintained at field capacity. In non-destructive variables were used four replicates per treatment evaluated every fifteen days, where each replicate consists of six plants, totaling 24. Destructive variables used were 4 replicates per treatment, determined biweekly from 15 days after flooding, where each replicate consists of a plant totaling 24 plants. Therefore, 48 plants were used per treatment. The non-destructive variables were height, diameter and number of leaves. While the destructive variables analyzed were dry weight of roots, dry weight of shoots and dry weight of root / shoot ratio. In addition, we carried out analysis of gas exchange on a monthly basis and evaluated twelve plants per treatment, with two sampling leaves, fully expanded, per plant. The biometric variables were subjected to analysis of variance and subsequently the average test (Tukey p <0.05), while the values of gas exchange were taken from the standard deviations of the mean. Thus, we observe that the flooding caused a reduction in height and dry mass of root / shoot ratio, from 30 days after treatment application. In addition, flooded plants showed morphological changes such as hypertrophy of adventitious roots and lenticels, characteristics of species tolerant to flooding. The net photosynthetic rate has been reduced by 48.20% compared to control after 60 days. However, despite reductions in growth variables and gas exchange species Lonchocarpus sericeus showed promise in the recovery of riparian vegetation, due to its morphological characteristics of species tolerant to flooding.