Fisher Discriminant Analysis (DA) seeks a linear combination of independent variables maximizing separation of predicted groups and also permits new observations for being classified in groups know a priori. We applied DA with eight structural attributes of vegetation obtained of systematic tree inventory surveys realized in five physiognomies types in the Brazilian Pampa biome. Later, 10 new samples were randomly selected from the same vegetation types to perform model validation. The DA generated four discriminant functions (DFs), where the first two had 88.4% power for discriminating groups (DF1 = 74.4% and DF2 = 14%). From the structural attributes used in the model, species richness, commercial height, and total height were related to DF1. Basal area and maximum stem diameter were related to DF2. The others DFs and structural variables have had less power of discriminating the groups. The DA classified 100% of the cases in their respective groups, showing a high efficiency of the chosen discriminating variables. The new forest samples inserted in the model were also classified with a small degree of error. The use of DA models should be enhanced because it is simple and more effective to express a forest classification model than the other descriptive multivariate methods.
A análise discriminante de Fisher (ADF) busca realizar uma combinação linear das variáveis independentes com objetivo de maximizar a separação de grupos preditos em um espaço reduzido bidimensional e ainda permitir que novas observações sejam classificadas ou não dentro dos grupos conhecidos a priori. Empregou-se a ADF utilizando oito variáveis estruturais obtidas de inventários sistemáticos do componente arbóreo (DAP>10 cm) realizados em cinco tipos florestais (total de 5 ha) distintos no bioma Pampa do sul do Brasil. Posteriormente foram sorteadas 10 novas amostras provenientes das mesmas fitofisionomias para realizar a validação do modelo. A AD gerou quatro funções discriminantes (FDs), sendo que as duas primeiras funções desempenharam uma capacidade de 88,4% de habilidade para discriminação dos grupos: FD1 = 74,4% (autovalor FD1 = 33,99) e FD2 = 14% (autovalor FD2 = 6,34). Os atributos estruturais que estiveram mais relacionados com a FD1 foram riqueza de espécies, altura comercial e altura total. Em FD2 prevaleceu a área basal e o diâmetro máximo atingido pelo caule. As outras FDs e variáveis estruturais apresentaram menor capacidade de discriminação dos grupos. A AD classificou 100% dos casos nos respectivos grupos preditos, revelando a alta eficiência das variáveis discriminadoras escolhidas. As novas amostras também foram classificadas em seus respectivos grupos, porém, com pequeno grau de erro. O uso da AD para a classificação das florestas deveria ser incentivado porque o método é simples e os resultados são estatisticamente mais confiáveis do que outros métodos descritivos da estatística multivariada que são amplamente utilizados.