Biblioteca Florestal
Digital

Mapping forests: a multitemporal analysis

Mostrar registro simples

dc.contributor.advisor Carvalho, Luis Marcelo Tavares de
dc.contributor.author Silveira, Eduarda Martiniano de Oliveira
dc.date.accessioned 2013-10-04T13:37:47Z
dc.date.available 2013-10-04T13:37:47Z
dc.date.issued 2007-08-09
dc.identifier.citation SILVEIRA, E. M. O. Mapping forests: a multitemporal analysis. 2007. 75 f. Dissertação (Mestrado em Engenharia Florestal) - Universidade Federal de Lavras, Lavras. 2007. pt_BR
dc.identifier.uri http://www.bibliotecaflorestal.ufv.br/handle/123456789/4235
dc.description Dissertação de Mestrado defendida na Universidade Federal de Lavras pt_BR
dc.description.abstract The North of Minas Gerais, Brazil, characterized by extensive cerrado areas, semideciduous and deciduous forest was chosen to validate the hypothesis that long time series combined with feature extraction algorithm and image fusion can be used to improve classification accuracy. Thus, this study was organized in five chapters. The first is a General Introduction. Chapter 02 evaluated the seasonal dynamics of this vegetation classes by analyzing time series of NDVI and EVI derived from MODIS sensor. On Chapter 03 the potential of the discrete wavelet transform in order to extract features to improve classification accuracy was tested. The objective of Chapter 04 was to assess the potential of using fused images between MODIS and TM images as well as feature extraction algorithm combined with image fusion to produce accurate maps. Chapter 05 is as General Conclusion. As a conclusion (1) the vegetation indices (NDVI and EVI) temporal profiles were efficient to depict the seasonal dynamics of vegetation and the best index for mapping was the NDVI; (2) The Wavelet decomposition improved land cover classification accuracy when the algorithm used in the transformation and the levels were properly chosen; (3)The data fusion and feature extraction method performed well in terms of overall accuracies as compared to results obtained by the original time series of NDVI. pt_BR
dc.description.abstract O Norte do estado de Minas Gerais, caracterizado por grandes áreas de cerrado, floresta estacional semidecidual e decidual foi escolhido para validar a hipótese de que séries temporais juntamente com algoritmos de extração de feições e fusão de imagens podem ser utilizados para aperfeiçoar a acurácia da classificação de imagens. Assim este estudo foi organizado em cinco capítulos. O capítulo 01 é uma introdução geral. O capítulo 02 avaliou a dinâmica sazonal da vegetação analisando as séries temporais dos índices de vegetação NDVI e EVI do sensor MODIS. No capítulo 03 o potencial da transformada em ondaletas discreta para extração de feições no aperfeiçoamento da classificação foi testado. O objetivo do capítulo 04 foi avaliar o potencial da fusão de imagens entre os sensores MODIS e TM, bem como algoritmos de extração de feições combinados com fusão de imagens com o intuito de aprimorar a classificação. O capítulo 05 é uma conclusão geral. Concluiu-se que (1) as assinaturas temporais dos índices de vegetação NDVI e EVI foram eficientes para detectar a dinâmica sazonal da vegetação e o melhor índice foi o NDVI; (2) a transformada em ondaletas aperfeiçoou a classificação da vegetação quando o algoritmo utilizado na transformação e os níveis de decomposição foram adotados corretamente; (3) a fusão de imagens e o método de extração de feições obtiveram bons resultados em termos de acurácia global quando comparados com resultados obtidos apartir das séries temporais de NDVI. pt_BR
dc.format 75 folhas pt_BR
dc.language.iso en pt_BR
dc.publisher Universidade Federal de Lavras pt_BR
dc.subject.classification Ciências Florestais::Manejo florestal pt_BR
dc.subject.classification Ciências Florestais::Manejo florestal::Fotogrametria e fotointerpretação florestal pt_BR
dc.title Mapping forests: a multitemporal analysis pt_BR
dc.type Dissertação pt_BR

Arquivos deste item

Arquivos Tamanho Formato Visualização Descrição
Dissertacao_Edu ... o de Oliveira Silveira.pdf 3.848Mb application/pdf Visualizar/Abrir ou Pre-visualizar Dissertação

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Buscar em toda a Biblioteca


Sobre a Biblioteca Florestal

Navegar

Minha conta