Este trabalho teve como objetivo realizar uma análise multitemporal da área da microbacia do Arroio Grande, localizada em Santa Maria, RS, a fim de detectar mudanças na cobertura florestal, sua localização e quantificação, além de monitorar os processos de desmatamento e regeneração e seus principais fatores determinantes. Foram utilizadas quatro imagens de satélite: LANDSAT 5 (1987), LANDSAT 5 (1995), LANDSAT 7 (2002) e CBERS 2 (2005). Utilizou-se o aplicativo SPRING para a elaboração da base de dados cartográficos e do processamento digital das imagens. As imagens foram segmentadas com limiar de 10 para similaridade e 20 para área e classificadas com auxílio do algoritmo Bhattacharya nos seguintes usos da terra: floresta, campo, solo exposto, agricultura, agricultura irrigada e lâmina d’água. Após a classificação das imagens, foi realizado o cruzamento dos mapas temáticos com ajuda da programação LEGAL. Como resultado, obtiveram-se mapas com os seguintes usos da terra: manutenção florestal, regeneração e desmatamento, ou seja, o que permaneceu inalterado de uma época para outra, o que regenerou e o que foi desmatado. Para um período de 18 anos, a cobertura florestal aumentou 25,59% ou 10,24% da área da microbacia, principalmente na encosta (rebordo) e no planalto, passando de 14.135,42 ha (40,01%) em 1987 para 17.752,20 ha (50,25%) em 2005. Porém, ainda há um déficit muito grande de mata ciliar na planície (depressão), principalmente devido ao cultivo de arroz. Os resultados obtidos mostram o potencial das técnicas de Sensoriamento Remoto e Geoprocessamento no mapeamento do uso da terra. Também servem para apoiar as mais diversas iniciativas de pesquisa, planejamento territorial, desenvolvimento econômico e preservação ambiental nesta região. Com o banco de dados gerado, será possível confeccionar modelos capazes de simular a dinâmica da cobertura florestal na área pesquisada.
This study had as objective to do a multi-temporal analysis from Arroio Grande watershed area, located in Santa Maria, RS, to detect the forest covering changes, its localization and quantification, as well as, to monitor the deforestation and regeneration processes and its main determinant factors. Four satellite images were used: LANDSAT 5 (1987), LANDSAT 5 (1995), LANDSAT 7 (2002) and CBERS 2 (2005). The SPRING applicative was used to elaborate the cartography dada basis and to digitally process the images. The images were segmented with threshold 10 to similarity and 20 to area and classified with Bhattacharya algorithm in the following land uses: forest, field, exposed soil, agriculture, irrigated agriculture and water lamina. After the images classification, a thematic maps cross was done with LEGAL programming. As a result, maps with the following land uses were obtained: forest maintenance, regeneration and deforestation. For a period of 18 years, the forest covering increased 25,59% or 10,24% in the area, mainly in the hillside and in the plateaus, changing from 14.135,42 ha (40,01%) in 1987 to 17.752,20 ha (50,25%) in 2005. However, there is still a great deficit of riparian forest in plain (depression), mainly due to rice cultivation. The obtained results show the potential of Remote Sensing and Geoprocessing techniques in mapping the land use. They also can be used to support researches, territorial planning, economical development and environmental preservation in this region. With the data bank obtained, it will be possible to create models able to simulate the forest covering dynamic in the studied area.