Biblioteca Florestal
Digital

Desempenho de um algoritmo de otimização hierárquico multiobjetivo aplicado a um modelo de superfície terrestre e ecossistemas

Mostrar registro simples

dc.contributor.advisor Costa, Marcos Heil
dc.contributor.author Camargos, Carla Cristina de Souza
dc.date.accessioned 2013-12-02T12:10:05Z
dc.date.available 2013-12-02T12:10:05Z
dc.date.issued 2013-03-20
dc.identifier.citation CAMARGOS, C. C. S. Desempenho de um algoritmo de otimização hierárquico multiobjetivo aplicado a um modelo de superfície terrestre e ecossistemas. 2013. 48 f. Dissertação (Mestrado em Meteorologia Agrícola) - Universidade Federal de Viçosa, Viçosa. 2013. pt_BR
dc.identifier.uri http://www.bibliotecaflorestal.ufv.br/handle/123456789/5453
dc.description Dissertação de Mestrado defendida na Universidade Federal de Viçosa pt_BR
dc.description.abstract O desempenho de um LSEM (Modelo de superfície terrestre e ecossistema) depende dos parâmetros das equações que representam os processos simulados. Contudo, a mensuração de alguns destes parâmetros pode ser impraticável ou até mesmo impossível; por isso, necessitam ser estimados ou, preferencialmente, otimizados para cada ecossistema. Quando os parâmetros são calibrados para uma única variável (problema mono-objetivo) eles podem não representar bem a realidade, dado a complexidade do modelo e sua dependência de diversas variáveis (problema multiobjetivo). Por isso, há a necessidade de uma otimização simultânea multiobjetiva. Porém, o desempenho da otimização diminui com o aumento do número de variáveis otimizadas simultaneamente e, além disso, o estudo da otimização simultânea de mais de três objetivos é uma área relativamente nova e não suficientemente estudada. Para a otimização simultânea de um grande número de variáveis, existe uma metodologia na qual se utiliza conceitos de teoria hierárquica de sistemas em que a otimização ocorre dos processos mais rápidos (fluxos radiativos) para os mais lentos (alocação de carbono). Este trabalho avalia o desempenho da otimização hierárquica do modelo, utilizando o índice D (a média das razões individuais entre as saídas das otimizações multiobjetiva e mono- objetiva). Entender como o índice de desempenho D do algoritmo de otimização hierárquico varia em relação ao número de funções objetivo otimizadas é de extrema importância para o desenvolvimento desta área de pesquisa. Para fazer atingir os objetivos, foram necessárias duas etapas. Primeiramente, foi feita uma análise de sensibilidade, a fim de conhecer a sensibilidade das variáveis de saída aos parâmetros do modelo. Depois, foram feitas simulações com todas as combinações possíveis entre as sete variáveis micrometeorológicas disponíveis (PARo, fAPAR, Rn, u*, H, LE, NEE) levando em consideração a hierarquia dos processos. Os resultados encontrados indicam que, para até três funções objetivo, a otimização multiobjetiva hierárquica pode gerar resultados melhores do que a otimização multiobjetiva tradicional (um único nível hierárquico), desde que a distribuição dos parâmetros entre as variáveis seja feita de forma coerente com a análise de sensibilidade. Outro resultado importante revela que para um mesmo número de saídas otimizadas, quanto maior o número de níveis hierárquicos melhor o desempenho do modelo otimizado. Porém, o desempenho do modelo diminui rapidamente quando o número de funções objetivo aumenta, evidenciando que o poder da calibração hierárquica para o uso de um grande número de funções objetivo é altamente dependente de algumas restrições que o modelo possui e um alto desempenho do modelo para muitas funções objetivo será possível somente após a remoção delas. pt_BR
dc.description.abstract The performance of LSEMs (Land surface and ecosystem models) depends on the parameters of the equations representing the simulated process. However, the measurement of some parameters can be impractical or even impossible; therefore, they need to be estimated, or preferably optimized specifically for each ecosystem. When the parameters are calibrated to a single variable (mono-objective problem) they may not represent the reality, because the complexity of the model and its dependence on several variables (multi-objective problem). Thus, simultaneous multi-objective optimizations are indispensable. However, the optimization performance decreases as the number of variables to be optimized simultaneously increases. Furthermore, the study of simultaneous optimization using more than three objectives is a new area and not yet sufficiently studied. For simultaneous optimization of a large number of variables, there is a method that uses concepts of hierarchical systems theory in which the optimization occurs from the fastest (radiative fluxes) to the slowest process (carbon allocation). This study evaluates the performance of the hierarchical optimization using the index D (the average of the ratios between the individual outputs of multi-objective optimization and mono- objective). Understanding how the performance index D varies with respect to the number of objective functions optimized and to the number of hierarchical levels is important for the development of this research area. Two steps are necessary to achieve the study goals. First, a sensitivity analysis was performed to determine the output variables sensitivity to the model parameters. After, simulations were made using all possible combinations among the seven micrometeorological variables available (PARo, fAPAR, Rn, u *, H, LE, NEE) taking into account the hierarchy of processes. The results indicate that for up to three objective functions, hierarchical multi-objective optimization generates better results than the simultaneous multi- objective optimization (one hierarchical level), provided that the parameters distribution among hierarchical levels is consistent with the sensitivity analysis. Another important result shows that for the same number of outputs optimized, the greater the number of hierarchical levels the better the performance of the optimized model. However, the model performance falls quickly as the number of objective functions increases, evidencing that the power of hierarchy calibration that use a high number of objective functions is highly dependent on the removal of some constraints for model’s performance. pt_BR
dc.format 48 folhas pt_BR
dc.language.iso pt_BR pt_BR
dc.publisher Universidade Federal de Viçosa pt_BR
dc.subject.classification Ciências Florestais::Meio ambiente::Ecologia e ecossistemas florestais pt_BR
dc.subject.classification Ciências Florestais::Meio ambiente pt_BR
dc.title Desempenho de um algoritmo de otimização hierárquico multiobjetivo aplicado a um modelo de superfície terrestre e ecossistemas pt_BR
dc.title Performance of a hierarchical multi-objective optimization algorithm applied to a land surface and ecosystem model pt_BR
dc.type Dissertação pt_BR

Arquivos deste item

Arquivos Tamanho Formato Visualização Descrição
Dissertacao_Carla-Cristina-de-Souza-Camargos.pdf 2.283Mb application/pdf Visualizar/Abrir ou Pre-visualizar Dissertação

Este item aparece na(s) seguinte(s) coleção(s)

Mostrar registro simples

Buscar em toda a Biblioteca


Sobre a Biblioteca Florestal

Navegar

Minha conta