The objective of the present work was to analyze the growth, water relations, gas exchange and quantification of organic solutes of jatobá (Hymenaea courbaril L.) seedlings under water deficit. The experiment was conducted in a greenhouse conditions at the Laboratory of Plant Physiology of the Universidade Federal Rural de Pernambuco, between August 2007 and January 2008, with trial period of 105 days. The plants were cultivated in vases with 8 kg of soil from where the seeds were collected. Randomized blocks were used as experimental design, with four water treatments (100%, 75%, 50% and 25% of the field capacity) and six replicates. Plant height, number of leaves and stem diameter were evaluated weekly. At the end of the experimental period, leaf area, leaf area ratio, specific leaf area, leaves, stem, root and total dry matter production and the biomass allocation to the several organs were determined. The leaf water potential was evaluated in three times (35, 70 and 105 days after differentiation) in two hours of evaluation (antemanhã and midday). The relative water content was measured only at the end of the experiment, using the leaves used in the analysis of midday leaf water potential. Temperature and relative humidity measures were taken daily inside the greenhouse for the calculation of the water deficit pressure. Transpiration and diffusive resistance were evaluated fortnightly. At the end of the experiment were measured the concentrations of soluble carbohydrates, soluble proteins and free proline. The water deficit affected the plant growth reducing plant height, stem diameter and dry matter production of all organs when cultivated in water levels with less than 50% of the field capacity. The number of leaves decreased in all stress levels when compared to 100% of field capacity. However, the pattern of biomass allocation, root:shoot ratio, leaf area ratio and specific leaf area were not affected by the stress. The applied water stress influenced the water relations of plants, restricting significantly the leaf water potential and relative water content, which are highly correlated. We observed significant increases in levels of organic solutes, according to the severity of the treatments, and proline, the organic solute that showed greater sensitivity to water deficit. The number of leaves was the variable more sensible to stress. Jatobá seedlings do not paralyze their growth when cultivated in soil with low water availability in their initial development stage. However its growth is severely affected by water levels less than 50% of water retention capacity in the soil. Overall, 35 days of exposure to 50% of the field capacity, do not affect the water potential of seedlings of jatobá, suggesting that the species is able to tolerate moderate stress, during the period. Finally the variables were good physiological indicators because easily indicated differences between the treatments.