Box e Cox (1964) desenvolveram um procedimento numérico para escolher uma trans- formação da resposta tal que a distribuição da variável transformada esteja o mais próximo possível da distribuição normal. A introdução de uma nova classe de modelos simétri- cos transformados não lineares visa estender os modelos de Box e Cox para uma classe geral dos modelos simétricos. Esta nova classe de modelos inclui todas as distribuições contínuas simétricas com uma possível estrutura não linear para a média e capacitando o ajustamento de uma larga extensão de modelos para vários tipos de dados. Para ilus- trar a utilidade dessa nova classe de modelos de regressão foi realizada uma aplicação na estimativa dos volumes de clones de Eucalyptus tereticornis com 7,5 anos oriundos de um experimento que está sendo realizado no Campo Experimental do Araripe do In- stituto Agronômico de Pernambuco (IPA), localizado no Município de Araripina, no semi- árido Pernambucano. O modelo não-linear utilizado para explicar os dados foi o modelo Schumacher-Hall. Diante dos resultados obtidos se concluí que o modelo transformado com erros t-Student com dois graus de liberdade foi o que melhor se ajustou os dados.
Box and Cox (1964) developed a numerical procedure to transform the response variable such that the transformed variable should be as closed as possible to the normal distribu- tion. The introduction of a new class of non linear symetric transformed models aims to extended the Box and Cox models to a general class of symetric models. The new class of models inclued all the continuos symmetric distributions with a possible non linear structure to the mean, making possible the use of the new class of regression models. It was applied in the estimate of volumes of the Eucalyptus tereticornis clones, with 7,5 years, planted in the Experimental Station of Araripe of the Agronomic Institute of Pernambuco (IPA), in the municipality of Araripina, in the semiarid of Pernambuco. The non linear model used as pattern was the Schumacher and Hall model. The results indicates that the transformed model with t-Student erros with two degrees of freedon adjusted better to the data set.