O trabalho teve como objetivo obter modelos estatísticos para a estimativa da umidade de equilíbrio de painéis OSB em função da temperatura e da umidade relativa do ar, assim como também avaliar o efeito de algumas variáveis de produção sobre a umidade de equilíbrio dos painéis. O delineamento experimental se constituiu de seis condições de processamento, três temperaturas do ar e seis umidades relativas do ar. Nas condições de processamento, foram avaliadas três diferentes espessuras das partículas strand (0,4; 0,7 e 1,0 mm), duas densidades aparentes do painel (0,65 e 0,90 g/cm3) e também três níveis de pressão na prensagem dos painéis (40, 60 e 80 kgf/cm2). Para cada tratamento foram produzidos quatro painéis com a madeira de Pinus taeda e 6% de adesivo fenol-formaldeído. Na avaliação do experimento foi considerado um delineamento inteiramente casualizado disposto em esquema fatorial triplo 6 x 3 x 6, ou seja, 6 variáveis de produção (condições de processamento), 3 temperaturas do ar (30, 40 e 50°C) e 6 umidades relativas (40, 50, 60, 70, 80, 90%). As médias foram comparadas estatisticamente pelo Teste Scott-Knott em nível de 5% de significância. A modelagem da umidade de equilíbrio dos painéis OSB foi realizada mediante o ajuste de modelos polinomiais múltiplos para cada tratamento. Com base nas medidas de precisão e nos resultados obtidos pode-se concluir que: 1) recomenda-se a utilização do modelo UEQ = β 0 + β 1 UR + β 2 UR2 + β 3 UR3 + β 4 Temp + ε para a estimativa indireta da umidade de equilíbrio dos painéis OSB; 2) A temperatura apresenta influência linear na umidade de equilíbrio dos painéis, enquanto que a umidade relativa do ar apresenta comportamento polinomial de terceira ordem, sendo que a umidade relativa do ar influencia de forma mais pronunciada a umidade de equilíbrio dos painéis OSB do que a temperatura ambiente; 3) Quanto ao efeito das variáveis de produção, a pressão de prensagem de 80 kgf/ cm2 e o aumento da espessura das partículas strand para 1,0 mm de espessura promoveu tendência de reduções nos valores médios de umidade de equilíbrio dos painéis OSB. Já o aumento da densidade do painel promoveu uma tendência de aumento da umidade de equilíbrio dos painéis OSB; e 4) O uso de modelos polinomiais múltiplos permite que sejam produzidas curvas de nível para a obtenção dos valores de umidade de equilíbrio dos painéis OSB em função da umidade relativa e da temperatura do local onde o painel esta exposto, se destacando pela sua praticidade de utilização.
The study aimed to obtain statistical models to estimate the equilibrium moisture content of OSB panels as a function of temperature and relative humidity of air, as well as evaluate the effect of some production variables on the equilibrium moisture content of the panels. The experimental design consisted of six processing conditions, three air temperature and six relative humidity of air. In the processing conditions, were evaluated three different thicknesses of the strand particles (0.4, 0.7 and 1.0 mm), two apparent densities of panels (0.65 and 0.90 g/cm3) and three levels of pressure in the pressing of the panels (40, 60 and 80 kgf/cm2). For each treatment four panels were produced with the wood of Pinus taeda and 6% of phenol formaldehyde adhesive. In the evaluation of the experiment was considered a completely randomized design arranged in a factorial triple 6 x 6 x 3, in order words, six production variables (processing conditions), three air temperatures (30, 40 and 50°C) and 6 relative humidity (40, 50, 60, 70, 80, 90%). The means were compared statistically by Scott-Knott test at the 5% level of significance. The modeling the equilibrium moisture content of OSB panels was performed with fit the multiple polynomial models for each treatment. Based on measurements of accuracy and the results can be concluded that: 1) it is recommended to use the model UEQ = β 0 + β 1 UR + β 2 UR2 + β 3 UR3 + β 4 Temp + ε for indirect estimation of equilibrium moisture content of OSB panels 2) The temperature shows linear influence on the equilibrium moisture content of the panels, while the relative humidity of air shows behaving of third order polynomial, and the relative humidity of air affects more pronouncedly the equilibrium moisture content of OSB panels than the ambient temperature; 3) In respect of the effect of production variables, the pressing of pressure of 80 kgf/cm2 and the increased the thickness of the strand particles to 1.0mm thick promoted trend of reductions in average of the equilibrium moisture content of OSB panels. But the increased density of the panel promoted the trend of increasing of equilibrium moisture content of OSB panels; and 4) The use of multiple polynomial models allows that are produced contours to obtain the values of equilibrium moisture content of OSB as a function of relative humidity and temperature of the place where the panel is exposed, standing out for its convenience of use.